1887

Abstract

Enterocin NKR-5-3B (Ent53B) is a 64-residue novel circular bacteriocin synthesized from an 87-residue prepeptide. Albeit through a still unknown mechanism, the EnkB1234 biosynthetic enzyme complex processes the prepeptide to yield its mature active, circular form. To gain insights into the key region/residue that plays a role in Ent53 maturation, several mutations near the cleavage site on the precursor peptide were generated. The interaction of the precursor peptide and EnkB1234 appeared to be hydrophobic in nature. At the Leu1 position, only mutations with helix structure-promoting hydrophobic residues (Ala, Ile, Val or Phe) were able to yield the mature Ent53B derivative. In this study, we also highlight the possible conformation-stabilizing role of the Ent53B leader peptide on the precursor peptide for its interaction with its biosynthetic enzyme complex. Any truncations of the leader peptide moiety interfered in the processing of the prepeptide. However, when propeptides of other circular bacteriocins (circularin A, leucocyclicin Q or lactocyclicin Q) were cloned at the C-terminus of the leader peptide, EnkB1234 could not process them to yield a mature bacteriocin. Taken together, these findings offer new perspectives in our understanding of the possible molecular mechanism of the biosynthesis of this circular bacteriocin. These new perspectives will help advance our current understanding to eventually elucidate circular bacteriocin biosynthesis. Understanding the biosynthetic mechanism of circular bacteriocins will materialize their application potential.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000435
2017-04-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/4/431.html?itemId=/content/journal/micro/10.1099/mic.0.000435&mimeType=html&fmt=ahah

References

  1. Perez RH, Zendo T, Sonomoto K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 2014;13:S3 [CrossRef][PubMed]
    [Google Scholar]
  2. Riley MA, Wertz JE. Bacteriocins: evolution, ecology, and application. Ann Rev Microbiol 2002;56:117–137 [CrossRef]
    [Google Scholar]
  3. Chen H, Hoover DG. Bacteriocins and their food applications. Compr Rev Food Sci Food Safe 2003;2:82–100
    [Google Scholar]
  4. Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 2005;3:777–788 [CrossRef][PubMed]
    [Google Scholar]
  5. Cotter PD, Ross RP, Hill C. Bacteriocins – a viable alternative to antibiotics?. Nat Rev Microbiol 2013;11:95–105 [CrossRef][PubMed]
    [Google Scholar]
  6. Van Heel AJ, Montalban-Lopez M, Kuipers OP. Evaluating the feasibility of lantibiotics as an alternative therapy against bacterial infections in humans. Expert Opin Drug Metab Toxicol 2011;7:675–680 [CrossRef][PubMed]
    [Google Scholar]
  7. Conlan BF, Gillon AD, Craik DJ, Anderson MA. Circular proteins and mechanisms of cyclization. Biopolymers 2010;94:573–583 [CrossRef][PubMed]
    [Google Scholar]
  8. Craik DJ, Mylne JS, Daly NL. Cyclotides: macrocyclic peptides with applications in drug design and agriculture. Cell Mol Life Sci 2010;67:9–16 [CrossRef][PubMed]
    [Google Scholar]
  9. Nakamura K, Arakawa K, Kawai Y, Yasuta N, Chujo T et al. Food preservative potential of gassericin A-containing concentrate prepared from cheese whey culture supernatant of Lactobacillus gasseri LA39. Anim Sci J 2013;84:144–149 [CrossRef]
    [Google Scholar]
  10. Van Belkum MJ, Martin-Visscher LA, Vederas JC. Structure and genetics of circular bacteriocins. Trends Microbiol 2011;19:411–418 [CrossRef][PubMed]
    [Google Scholar]
  11. Oman TJ, Van der Donk WA. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 2010;6:9–18 [CrossRef][PubMed]
    [Google Scholar]
  12. Van Belkum MJ, Worobo RW, Stiles ME. Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Mol Microbiol 1997;23:1293–1301 [CrossRef][PubMed]
    [Google Scholar]
  13. Lubelski J, Rink R, Khusainov R, Moll GN, Kuipers OP. Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci 2008;65:455–476 [CrossRef][PubMed]
    [Google Scholar]
  14. Abts A, Montalban-Lopez M, Kuipers OP, Smits SH, Schmitt L. NisC binds the FxLx motif of the nisin leader peptide. Biochemistry 2013;52:5387–5395 [CrossRef][PubMed]
    [Google Scholar]
  15. Kuipers A, de Boef E, Rink R, Fekken S, Kluskens LD et al. NisT, the transporter of the lantibiotic nisin, can transport fully modified, dehydrated, and unmodified prenisin and fusions of the leader peptide with non-lantibiotic peptides. J Biol Chem 2004;279:22176–22182 [CrossRef][PubMed]
    [Google Scholar]
  16. Rink R, Kluskens LD, Kuipers A, Driessen AJ, Kuipers OP et al. NisC, the cyclase of the lantibiotic nisin, can catalyze cyclization of designed nonlantibiotic peptides. Biochemistry 2007;46:13179–13189 [CrossRef][PubMed]
    [Google Scholar]
  17. Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H. The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 2006;70:564–582 [CrossRef][PubMed]
    [Google Scholar]
  18. Fimland G, Johnsen L, Dalhus B, Nissen-Meyer J. Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J Pept Sci 2005;11:688–696 [CrossRef][PubMed]
    [Google Scholar]
  19. Martin-Visscher LA, Van Belkum MJ, Vederas JC. Class IIc or circular bacteriocins. In Drider D, Rebuffat S. (editors) Prokaryotic Antimicrobial Peptides: From Genes to Applications London: Springer; 2011; pp.213–236[CrossRef]
    [Google Scholar]
  20. Masuda Y, Zendo T, Sonomoto K. New type of non-lantibiotic bacteriocins: circular and leaderless bacteriocins. Benef Microbes 2012;3:3–12 [CrossRef][PubMed]
    [Google Scholar]
  21. Perez RH, Ishibashi N, Inoue T, Himeno K, Masuda Y et al. Functional analysis of the genes involved in the biosynthesis of enterocin NKR-5-3B, a novel circular bacteriocin. J Bacteriol 2016;198:291–300 [CrossRef]
    [Google Scholar]
  22. Himeno K, Rosengren KJ, Inoue T, Perez RH, Colgrave ML et al. Identification, characterization, and three-dimensional structure of the novel circular bacteriocin, enterocin NKR-5-3B, from Enterococcus faecium. Biochemistry 2015;54:4863–4876 [CrossRef][PubMed]
    [Google Scholar]
  23. Ishibashi N, Himeno K, Fujita K, Masuda Y, Perez RH et al. Purification and characterization of multiple bacteriocins and an inducing peptide produced by Enterococcus faecium NKR-5-3 from Thai fermented fish. Biosci Biotechnol Biochem 2012;76:947–953 [CrossRef][PubMed]
    [Google Scholar]
  24. Perez RH, Himeno K, Ishibashi N, Masuda Y, Zendo T et al. Monitoring of the multiple bacteriocin production by Enterococcus faecium NKR-5-3 through a developed liquid chromatography and mass spectrometry-based quantification system. J Biosci Bioeng 2012;114:490–496 [CrossRef][PubMed]
    [Google Scholar]
  25. Sambrook J, Russell DW. Molecular Cloning: a Laboratory Manual, 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 2001
    [Google Scholar]
  26. Masuda Y, Ono H, Kitagawa H, Ito H, Mu F et al. Identification and characterization of leucocyclicin Q, a novel cyclic bacteriocin produced by Leuconostoc mesenteroides TK41401. Appl Environ Microbiol 2011;77:8164–8170 [CrossRef][PubMed]
    [Google Scholar]
  27. Sawa N, Zendo T, Kiyofuji J, Fujita K, Himeno K et al. Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Appl Environ Microbiol 2009;75:1552–1558 [CrossRef][PubMed]
    [Google Scholar]
  28. Kemperman R, Kuipers A, Karsens H, Nauta A, Kuipers O et al. Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Appl Environ Microbiol 2003;69:1589–1597 [CrossRef][PubMed]
    [Google Scholar]
  29. Islam MR, Shioya K, Nagao J, Nishie M, Jikuya H et al. Evaluation of essential and variable residues of nukacin ISK-1 by NNK scanning. Mol Microbiol 2009;72:1438–1447 [CrossRef][PubMed]
    [Google Scholar]
  30. Nishie M, Sasaki M, Nagao J, Zendo T, Nakayama J et al. Lantibiotic transporter requires cooperative functioning of the peptidase domain and the ATP binding domain. J Biol Chem 2011;286:11163–11169 [CrossRef][PubMed]
    [Google Scholar]
  31. Iwatani S, Yoneyama F, Miyashita S, Zendo T, Nakayama J et al. Identification of the genes involved in the secretion and self-immunity of lacticin Q, an unmodified leaderless bacteriocin from Lactococcus lactis QU 5. Microbiology 2012;158:2927–2935 [CrossRef][PubMed]
    [Google Scholar]
  32. Mu F, Masuda Y, Zendo T, Ono H, Kitagawa H et al. Biological function of a DUF95 superfamily protein involved in the biosynthesis of a circular bacteriocin, leucocyclicin Q. J Biosci Bioeng 2014;117:158–164 [CrossRef][PubMed]
    [Google Scholar]
  33. Cole C, Barber JD, Barton GJ. The Jpred 3 secondary structure prediction server. Nucleic Acids Res 2008;36:W197–W201 [CrossRef][PubMed]
    [Google Scholar]
  34. Mcguffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics 2000;16:404–405 [CrossRef][PubMed]
    [Google Scholar]
  35. Plat A, Kluskens LD, Kuipers A, Rink R, Moll GN. Requirements of the engineered leader peptide of nisin for inducing modification, export, and cleavage. Appl Environ Microbiol 2011;77:604–611 [CrossRef][PubMed]
    [Google Scholar]
  36. Martin-Visscher LA, Gong X, Duszyk M, Vederas JC. The three-dimensional structure of carnocyclin A reveals that many circular bacteriocins share a common structural motif. J Biol Chem 2009;284:28674–28681 [CrossRef][PubMed]
    [Google Scholar]
  37. Rink R, Wierenga J, Kuipers A, Kluskens LD, Driessen AJ et al. Production of dehydroamino acid-containing peptides by Lactococcus lactis. Appl Environ Microbiol 2007;73:1792–1796 [CrossRef][PubMed]
    [Google Scholar]
  38. Paetzel M, Karla A, Strynadka NC, Dalbey RE. Signal peptidases. Chem Rev 2002;102:4549–4580 [CrossRef][PubMed]
    [Google Scholar]
  39. Phan UT, Lackman RL, Cresswell P. Role of the C-terminal propeptide in the activity and maturation of gamma-interferon-inducible lysosomal thiol reductase (GILT). Proc Natl Acad Sci USA 2002;99:12298–12303 [CrossRef][PubMed]
    [Google Scholar]
  40. Meyer C, Bierbaum G, Heidrich C, Reis M, Suling J et al. Nucleotide sequence of the lantibiotic Pep5 biosynthetic gene cluster and functional analysis of PepP and PepC. Evidence for a role of PepC in thioether formation. Eur J Biochem 1995;232:478–489 [CrossRef]
    [Google Scholar]
  41. Nagao J, Morinaga Y, Islam MR, Asaduzzaman SM, Aso Y et al. Mapping and identification of the region and secondary structure required for the maturation of the nukacin ISK-1 prepeptide. Peptides 2009;30:1412–1420 [CrossRef][PubMed]
    [Google Scholar]
  42. Sprules T, Kawulka KE, Vederas JC. NMR solution structure of ImB2, a protein conferring immunity to antimicrobial activity of the type IIa bacteriocin, carnobacteriocin B2. Biochemistry 2004;43:11740–11749 [CrossRef][PubMed]
    [Google Scholar]
  43. Patton GC, Paul M, Cooper LE, Chatterjee C, van der Donk WA. The importance of the leader sequence for directing lanthionine formation in lacticin 481. Biochemistry 2008;47:7342–7351 [CrossRef][PubMed]
    [Google Scholar]
  44. Gabrielsen C, Brede DA, Salehian Z, Nes IF, Diep DB. Functional genetic analysis of the GarML gene cluster in Lactococcus garvieae DCC43 gives new insights into circular bacteriocin biosynthesis. J Bacteriol 2014;196:911–919 [CrossRef][PubMed]
    [Google Scholar]
  45. Cebrián R, Maqueda M, Neira JL, Valdivia E, Martínez-Bueno M et al. Insights into the functionality of the putative residues involved in enterocin AS-48 maturation. Appl Environ Microbiol 2010;76:7268–7276 [CrossRef][PubMed]
    [Google Scholar]
  46. Gabrielsen C, Brede DA, Hernández PE, Nes IF, Diep DB. The maltose ABC transporter in Lactococcus lactis facilitates high-level sensitivity to the circular bacteriocin garvicin ML. Antimicrob Agents Chemother 2012;56:2908–2915 [CrossRef][PubMed]
    [Google Scholar]
  47. Jacob AE, Hobbs SJ. Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes. J Bacteriol 1974;117:360–372[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000435
Loading
/content/journal/micro/10.1099/mic.0.000435
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error