1887

Abstract

Xylella fastidiosa, a xylem-limited bacterium transmitted by xylem-fluid-feeding Hemiptera insects, causes economic losses of both woody and herbaceous plant species. A Xyl. fastidiosa subsp. pauca strain, namely CoDiRO, was recently found to be associated with the ‘olive quick decline syndrome’ in southern Italy (i.e. Apulia region). Recently, some Xyl. fastidiosa strains intercepted in France from Coffea spp. plant cuttings imported from Central and South America were characterized. The introduction of infected plant material from Central America in Apulia was also postulated even though an ad hoc study to confirm this hypothesis is lacking. In the present study, we assessed the complete and draft genome of 27 Xyl. fastidiosa strains. Through a genome-wide approach, we confirmed the occurrence of three subspecies within Xyl. fastidiosa, namely fastidiosa, multiplex and pauca, and demonstrated the occurrence of a genetic clonal complex of four Xyl. fastidiosa strains belonging to subspecies pauca which evolved in Central America. The CoDiRO strain displayed 13 SNPs when compared with a strain isolated in Costa Rica from Coffea sp. and 32 SNPs when compared with two strains obtained from Nerium oleander in Costa Rica. These results support the close relationships of the two strains. The four strains in the clonal complex contain prophage-like genes in their genomes. This study strongly supports the possibility of the introduction of Xyl. fastidiosa in southern Italy via coffee plants grown in Central America. The data also stress how the current global circulation of agricultural commodities potentially threatens the agrosystems worldwide.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000388
2016-12-21
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/12/2087.html?itemId=/content/journal/micro/10.1099/mic.0.000388&mimeType=html&fmt=ahah

References

  1. Aguilar E., Villalobos W., Moreira L., Rodríguez C. M., Kitajima E. W., Rivera C..( 2005;). First report of Xylella fastidiosa infecting citrus in Costa Rica. . Plant Dis 89: 687. [CrossRef]
    [Google Scholar]
  2. Alencar V. C., Barbosa D., Santos D. S., Oliveira A. C., de Oliveira R. C., Nunes L. R..( 2014;). Genomic sequencing of two coffee-infecting strains of Xylella fastidiosa isolated from Brazil. . Genome Announc 2: e01190-13. [CrossRef] [PubMed]
    [Google Scholar]
  3. Almeida R. P. P., Nunney L..( 2015;). How do plant diseases caused by Xylella fastidiosa emerge ?. Plant Dis 99: 1457–1467.[CrossRef]
    [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J..( 1990;). Basic local alignment search tool. . J Mol Biol 215: 403–410.[CrossRef]
    [Google Scholar]
  5. Amanifair N., Taghavi M., Izadpanah K., Babaei G..( 2014;). Isolation and pathogenicity of Xylella fastidiosa from grapevine in Iran. . Phytopathol Mediterr 53: 318–327.
    [Google Scholar]
  6. Barbosa D., Costa de Oliveira R., Coletta-Filho H. D., Santos D. S., Alencar V. C., Nunes L. R., de Souza A. A., de Freitas Oliveira A. C., de Oliveira R. S..( 2015;). Comparative genomic analysis of coffee-infecting Xylella fastidiosa strains isolated from Brazil. . Microbiology 161: 1018–1033. [CrossRef]
    [Google Scholar]
  7. Bergsma-Vlami M., Van de Bilt J. L. J., Tjou-Tiam-Sin. N. N. A., Van de Vossenberg B. T. L. H., Westenberg M..( 2015;). Xylella fastidiosa in Coffea arabica ornamental plants imported from Costa Rica and Honduras in The Netherlands. . J Plant Pathol 97: 391–405.
    [Google Scholar]
  8. Bhattacharyya A., Stilwagen S., Ivanova N., D'Souza M., Bernal A., Lykidis A., Kapatral V., Anderson I., Larsen N. et al.( 2002;). Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa strains. . Proc Natl Acad Sci U S A 99: 12403–12408. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bleve G., Marchi G., Ranaldi F., Gallo A., Cimaglia F., Logrieco A. F., Mita G., Ristori J., Surico G..( 2016;). Molecular characteristics of a strain (Salento-1) of Xylella fastidiosa isolated in Apulia (Italy) from an olive plant with the quick decline syndrome. . Phytopathol Mediterr 55: 139–146.
    [Google Scholar]
  10. Bos K. I., Schuenemann V. J., Golding G. B., Burbano H. A., Waglechner N., Coombes B. K., McPhee J. B., DeWitte S. N., Meyer M. et al.( 2011;). A draft genome of Yersinia pestis from victims of the Black Death. . Nature 478: 506–510. [CrossRef] [PubMed]
    [Google Scholar]
  11. Burbank L. P., Stenger D. C..( 2016;). A temperature-independent cold-shock protein homolog acts as a virulence factor in Xylella fastidiosa. . Mol Plant Microbe Interact 29: 335–344. [CrossRef] [PubMed]
    [Google Scholar]
  12. Butler M. I., Stockwell P. A., Black M. A., Day R. C., Lamont I. L., Poulter R. T..( 2013;). Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China. . PLoS One 8: e57464.
    [Google Scholar]
  13. Cai R., Lewis J., Yan S., Liu H., Clarke C. R., Campanile F., Almeida N. F., Studholme D. J., Lindeberg M. et al.( 2011;). The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. . PLoS Pathog 7: e1002130. [CrossRef] [PubMed]
    [Google Scholar]
  14. Chen J., Groves R., Civerolo E. L., Viveros M., Freeman M., Zheng Y..( 2005;). Two Xylella fastidiosa genotypes associated with almond leaf scorch disease on the same location in California. . Phytopathology 95: 708–714. [CrossRef] [PubMed]
    [Google Scholar]
  15. Chen J., Xie G., Han S., Chertkov O., Sims D., Civerolo E. L..( 2010;). Whole genome sequences of two Xylella fastidiosa strains (M12 and M23) causing almond leaf scorch disease in California. . J Bacteriol 192: 4534.[CrossRef]
    [Google Scholar]
  16. Chen J., Huang H., Chang C. J., Stenger D. C..( 2013;). Draft genome sequence of Xylella fastidiosa subsp. multiplex strain Griffin-1 from Quercus rubra in Georgia. . Genome Announc 1: e00756-13. [CrossRef] [PubMed]
    [Google Scholar]
  17. Chen J., Wu F., Zheng Z., Deng X., Burbank L. P., Stenger D. C..( 2016;). Draft genome sequence of Xylella fastidiosa subsp. fastidiosa strain Stag's Leap. . Genome Announc 4: e00240-16. [CrossRef] [PubMed]
    [Google Scholar]
  18. Chun J., Rainey F. A..( 2014;). Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. . Int J Syst Evol Microbiol 64: 316–324.[CrossRef]
    [Google Scholar]
  19. Costa H. S., Guzman A., Hernandez-Martinez R., Gispert C., Cooksey D. A..( 2006;). Detection and differentiation of Xylella fastidiosa strains acquired and retained by glass-winged sharpshooters (Hemiptera: Cicadellidae) using a mixture of strain-specific primer sets. . J Econ Entomol 99: 1058–1064.[CrossRef]
    [Google Scholar]
  20. Da Silva V. S., Shida C. S., Rodrigues F. B., Ribeiro D. C. D., de Souza A. A., Coletta-Filho E. D., Machado M. A., Nunes L. R., de Oliveira R. C..( 2007;). Comparative genomic characterization of citrus-associated Xylella fastidiosa strains. . BMC Genomics 8: 474.[CrossRef]
    [Google Scholar]
  21. Darling A. E., Mau B., Perna N. T..( 2010;). ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. . PLoS One 5: e11147.[CrossRef]
    [Google Scholar]
  22. de Mello Varani A., Souza R. C., Nakaya H. I., de Lima W. C., Paula de Almeida L. G., Kitajima E. W., Chen J., Civerolo E., Vasconcelos A. T., Van Sluys M. A..( 2008;). Origins of the Xylella fastidiosa prophage-like regions and their impact in genome differentiation. . PLoS One 3: e4059. [CrossRef] [PubMed]
    [Google Scholar]
  23. Delcher A. L., Bratke K. A., Powers E. C., Salzberg S. L., Powers K. A..( 2007;). Identifying bacterial genes and endosymbiont DNA with Glimmer. . Bioinformatics 23: 673–679. [CrossRef] [PubMed]
    [Google Scholar]
  24. EPPO( 2015;). Xylella fastidiosa detected in Alpes-Maritimes, mainland France. . EPPO Reporting Service,no. 10 p. 180. Paris:: European and Mediterranean Plant Protection Organization;.
    [Google Scholar]
  25. European Parliament( 2015;). Motion for a Resolution on the Outbreak of Xylella fastidiosa Affecting Olive Trees. Edited by De Castro P., Thomas I., Andrieu E., Aguilera Garcia C. E., Dancila V., Mizzi M., Negrescu V.. B8-0457/2015.
    [Google Scholar]
  26. Doddapaneni H., Yao J., Lin H., Walker M. A., Civerolo E. L..( 2006;). Analysis of the genome-wide variations among multiple strains of the plant pathogenic bacterium Xylella fastidiosa. . BMC Genomics 7: 225.[CrossRef]
    [Google Scholar]
  27. Fu Y. X., Li W. H..( 1993;). Statistical tests of neutrality of mutations. . Genetics 133: 693–709.
    [Google Scholar]
  28. Giampetruzzi A., Chiumenti M., Saponari M., Donvito G., Italiano A., Loconsole G., Boscia D., Cariddi C., Martelli G. P., Saldarelli P..( 2015a;). Draft genome sequence of the Xylella fastidiosa CoDiRO strain. . Genome Announc 3: e01538-14. [CrossRef]
    [Google Scholar]
  29. Giampetruzzi A., Loconsole G., Boscia D., Calzolari A., Chiumenti M., Martelli G. P., Saldarelli P., Almeida R. P. P., Saponari M..( 2015b;). Draft genome sequence of CO33, a coffee-infecting isolate of Xylella fastidiosa. . Genome Announc 3: e01472-15. [CrossRef]
    [Google Scholar]
  30. Guan W., Shao J., Zhao T., Huang Q..( 2014;). Genome sequence of a Xylella fastidiosa strain causing mulberry leaf scorch disease in Maryland. . Genome Announc 2: e00916-13. [CrossRef] [PubMed]
    [Google Scholar]
  31. Huson D. H., Bryant D..( 2006;). Application of phylogenetic networks in evolutionary studies. . Mol Biol Evol 23: 254–267.[CrossRef]
    [Google Scholar]
  32. Jacques M.-A., Denancé N., Legendre B., Morel E., Briand M., Mississipi S., Durand K., Olivier V., Portier P. et al.( 2016;). New variants of coffee-infecting Xylella fastidiosa issued from homologous recombination. . Appl Environ Microbiol 82: 1556–1568.[CrossRef]
    [Google Scholar]
  33. Jolley K. A., Feil E. J., Chan M. S., Maiden M. C..( 2001;). Sequence type analysis and recombinational tests (START). . Bioinformatics 17: 1230–1231.[CrossRef]
    [Google Scholar]
  34. Kim M., Oh H.-S., Park S.-C., Chun J..( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. . Int J Syst Evol Microbiol 64: 346–351.[CrossRef]
    [Google Scholar]
  35. Kosakovsky Pond S. L., Posada D., Gravenor M. B., Woelk C. H., Frost S. D..( 2006;). Automated phylogenetic detection of recombination using a genetic algorithm. . Mol Biol Evol 23: 1891–1901.[CrossRef]
    [Google Scholar]
  36. Librado P., Rozas J..( 2009;). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. . Bioinformatics 25: 1451–1452.[CrossRef]
    [Google Scholar]
  37. Loconsole G., Potere O., Boscia D., Altamura G., Djelouah K., Elbeaino T., Frasheri D., Lorusso D., Palmisano F..( 2014;). Detection of Xylella fastidiosa in olive trees by molecular and serological methods. . J Plant Pathol 96: 7–14.
    [Google Scholar]
  38. Marcelletti S., Ferrante P., Petriccione M., Firrao G., Scortichini M..( 2011;). Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species. . PLoS One 6: e27297.[CrossRef]
    [Google Scholar]
  39. Marcelletti S., Scortichini M..( 2016;). Genome-wide comparison and taxonomic relatedness of multiple Xylella fastidiosa strains reveal the occurrence of three subspecies and a new Xylella species. . Arch Microbiol 198: 803–812.[CrossRef]
    [Google Scholar]
  40. Mazzaglia A., Studholme D. J., Taratufolo M. C., Cai R., Almeida N. F., Goodman T., Guttman D. S., Vinatzer B. A., Balestra G. M..( 2012;). Pseudomonas syringae pv. actinidiae (PSA) isolates from recent bacterial canker of kiwifruit outbreaks belong to the same genetic lineage. . PLoS One 7: e36518.[CrossRef]
    [Google Scholar]
  41. McCann H. C., Rikkerink E. H., Bertels F., Fiers M., Lu A., Rees-George J., Andersen M. T., Gleave A. P., Haubold B. et al.( 2013;). Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. . PLoS Pathog 9: e1003503. [CrossRef] [PubMed]
    [Google Scholar]
  42. Montero-Astua M., Chacon-Diaz C., Aguilar E., Rodriguez C. M., Garita L., Villalobos W., Moreira L., Hartung J. S., Rivera C..( 2008;). Isolation and molecular characterization of Xylella fastidiosa from coffee plants in Costa Rica. . J Microbiol 46: 482–490.[CrossRef]
    [Google Scholar]
  43. Nakaminami K., Karison D. T., Imai R..( 2006;). Functional conservation of cold shock domains in bacteria and higher plants. . Proc Natl Acad Sci U S A 103: 10122–10127.[CrossRef]
    [Google Scholar]
  44. Nunes L. R., Rosato Y. B., Muto N. H., Yanai G. M., da Silva V. S., Leite D. B., Gonçalves E. R., de Souza A. A., Coletta-Filho H. D. et al.( 2003;). Microarray analyses of Xylella fastidiosa provide evidence of coordinated transcription control of laterally transferred elements. . Genome Res 13: 570–578. [CrossRef] [PubMed]
    [Google Scholar]
  45. Nunney L. R., Yuan X., Bromley R. E., Stouthamer R..( 2012;). Detecting genetic introgression: high levels of intersubspecific recombination found in Xylella fastidiosa in Brazil. . Appl Environ Microbiol 78: 4702–4714.[CrossRef]
    [Google Scholar]
  46. Nunney L., Vickerman D. B., Bromley R. E., Russell S. A., Hartman J. R., Morano L. D., Stouthamer R..( 2013;). Recent evolutionary radiation and host plant specialization in the Xylella fastidiosa subspecies native to the United States. . Appl Environ Microbiol 79: 2189–2389. [CrossRef] [PubMed]
    [Google Scholar]
  47. Nunney L. R., Ortiz B., Russell S. A., Ruiz Sanchez R., Stouthamer R..( 2014;). The complex biogeography of the plant pathogen Xylella fastidiosa: genetic evidence of introductions and subspecific introgression in Central America. . PLoS One 9: e112463.[CrossRef]
    [Google Scholar]
  48. Page A. J., Taylor B., Delaney J., Soares J., Seeman T., Keane J. A., Harris S. R..( 2016;). SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. . BioRχiv. doi:10.1101/038190.
    [Google Scholar]
  49. Pendergrast M..( 2001;). Uncommon Grounds: The History of Coffee and How It Transformed Our World. London, UK:: Texere;.
    [Google Scholar]
  50. Phadtare S..( 2004;). Recent developments in bacterial cold-shock response. . Curr Issues Mol Biol 6: 125–136.
    [Google Scholar]
  51. Poliakoff F..( 2015;). Intra and inter-laboratory evaluation of molecular methods for detection of Xylella fastidiosa in France. . In Proc 19th Meeting of the EPPO Panel on Diagnostic in Bacteriology, Copenhagen, 20–22 October 2015. Paris:: European and Mediterranean Plant Protection Organization;.
    [Google Scholar]
  52. Poptsova M. S., Gogarten J. P..( 2007;). BranchClust: a phylogenetic algorithm for selecting gene families. . BMC Bioinformatics 8: 120. [CrossRef]
    [Google Scholar]
  53. Purcell A..( 2013;). Paradigms: examples from the bacterium Xylella fastidiosa. . Annu Rev Phytopathol 51: 339–356.[CrossRef]
    [Google Scholar]
  54. Richter M., Rosselló-Móra R..( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106: 19126–19131.[CrossRef]
    [Google Scholar]
  55. Saponari M., Loconsole G., Cornara D., Yokomi R. K., De Stradis A., Boscia D., Bosco D., Martelli G. P., Krugner R. et al.( 2014a;). Infectivity and transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy. . J Econ Entomol 107: 1316–1319. [CrossRef]
    [Google Scholar]
  56. Saponari M., Boscia D., Loconsole G., Palmisano F., Savino V., Potere O., Martelli G. P..( 2014b;). New hosts of Xylella fastidiosa strain CoDiRO in Apulia. . J Plant Pathol 96: 611.
    [Google Scholar]
  57. Scally M., Schuenzel E. L., Stouthamer R., Nunney L..( 2005;). Multilocus sequence type system for the plant pathogen Xylella fastidiosa and relative contribution of recombination and point mutation to clonal diversity. . Appl Environ Microbiol 71: 8491–8499.[CrossRef]
    [Google Scholar]
  58. Schaad N. W., Postnikova E., Lacy G., Fatmi M., Chang C. J..( 2004;). Xylella fastidiosa subspecies: X. fastidiosa subsp. piercei, subsp. nov., X. fastidiosa subsp. multiplex subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. . Syst Appl Microbiol 27: 290–300.[CrossRef]
    [Google Scholar]
  59. Schreiber H. L., Koirala M., Lara A., Ojeda M., Dowd S. E., Bextine B., Morano L..( 2010;). Unraveling the first Xylella fastidiosa subsp. fastidiosa genome from Texas. . Southwest Entomol 35: 479–483. [CrossRef]
    [Google Scholar]
  60. Simpson A. J., Reinach F. C., Arruda P., Abreu F. A., Acencio M., Alvarenga R., Alves L. M., Araya J. E., Baia G. S. et al.( 2000;). The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis. . Nature 406: 151–159. [CrossRef] [PubMed]
    [Google Scholar]
  61. Su C.-C., Deng W.-L..( 2014;). Draft genome sequence of Xylella fastidiosa pear leaf scorch strain in Taiwan. . Genome Announc 2: e00166-14.
    [Google Scholar]
  62. Su C.-C., Huang H., Chang C.-J., Deng W.-L., Jan F.-J., Shih H.-T., Chen J..( 2016;). Xylella taiwanensis sp. nov. cause of pear leaf scorch disease in Taiwan. . Int J Syst Evol Microbiol 66: 4766–4771.[CrossRef]
    [Google Scholar]
  63. Summer E. J., Enderle C. J., Ahern S. J., Gill J. J., Torres C. P., Appel D. N., Black M. C., Young R., Gonzalez C. F..( 2010;). Genomic and biological analysis of phage Xfas53 and related prophages of Xylella fastidiosa. . J Bacteriol 191: 179–190.[CrossRef]
    [Google Scholar]
  64. Tajima F..( 1989;). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. . Genetics 123: 585–595.
    [Google Scholar]
  65. Tibayrenc M., Ayala F. J..( 2012;). Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. . Proc Natl Acad Sci U S A 109: E3305E3313.[CrossRef]
    [Google Scholar]
  66. Van Sluys M. A., de Oliveira M. C., Monteiro-Vitorello C. B., Miyaki C. Y., Furlan L. R., Camargo L. E., da Silva A. C., Moon D. H., Takita M. A. et al.( 2003;). Comparative analyses of the complete genome sequences of Pierce's disease and citrus variegated chlorosis strains of Xylella fastidiosa. . J Bacteriol 185: 1018–1026. [CrossRef] [PubMed]
    [Google Scholar]
  67. Varani A. M., Monteiro-Vitorello C. B., Nakaja H. I., Van Sluys M. A..( 2013;). The role of prophage in plant-pathogenic bacteria. . Annu Rev Phytopathol 51: 429–451.[CrossRef]
    [Google Scholar]
  68. Varghese N. J., Mukherjee S., Ivanova N., Konstantinidis K. T., Mavrommatis K., Kyrpides N. C., Pati A..( 2015;). Microbial species delineation using whole genome sequences. . Nucleic Acids Res 43: 6761–6771.[CrossRef]
    [Google Scholar]
  69. Wall D. P., Fraser H. B., Hirsh A. E..( 2003;). Detecting putative orthologs. . Bioinformatics 19: 1710–1711.[CrossRef]
    [Google Scholar]
  70. Wells J. M., Raju B. C., Hung H.-Y., Weisburg W. G., Mandelco-Paul L., Brenner D..( 1987;). Xylella fastidiosa gen. nov., sp. nov: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. . Int J Syst Evol Microbiol 37: 136–143.
    [Google Scholar]
  71. Zhang S., Flores-Cruz Z., Kumar D., Chakrabarty P., Hopkins D. L., Gabriel D. W..( 2011;). The Xylella fastidiosa biocontrol strain EB92-1 genome is very similar and syntenic to Pierce's disease strains. . J Bacteriol 193: 5576–5577.[CrossRef]
    [Google Scholar]
  72. Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S..( 2011;). PHAST: a fast phage search tool. . Nucleic Acid Res 39: W347–W349.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000388
Loading
/content/journal/micro/10.1099/mic.0.000388
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error