1887

Abstract

To identify physiological processes affected by cAMP in the plant-symbiotic nitrogen-fixing α-proteobacterium Sinorhizobium meliloti Rm2011, cAMP levels were artificially increased by overexpression of its cognate adenylate/guanylate cyclase gene cyaJ. This resulted in high accumulation of cAMP in the culture supernatant, decreased swimming motility and increased production of succinoglycan, an exopolysaccharide involved in host invasion. Weaker, similar phenotypic changes were induced by overexpression of cyaB and cyaG1. Effects on swimming motility and succinoglycan production were partially dependent on clr encoding a cyclic AMP receptor-like protein. Transcriptome profiling of an cyaJ-overexpressing strain identified 72 upregulated and 82 downregulated genes. A considerable number of upregulated genes are related to polysaccharide biosynthesis and osmotic stress response. These included succinoglycan biosynthesis genes, genes of the putative polysaccharide synthesis nodP2-exoF3 cluster and feuN, the first gene of the operon encoding the FeuNPQ regulatory system. Downregulated genes were mostly related to respiration, central metabolism and swimming motility. Promoter-probe studies in the presence of externally added cAMP revealed 18 novel Clr-cAMP-regulated genes. Moreover, the addition of cGMP into the growth medium also promoted clr-dependent gene regulation. In vitro binding of Clr-cAMP and Clr-cGMP to the promoter regions of SMc02178, SMb20906, SMc04190, SMc00925, SMc01136 and cyaF2 required the DNA motif (A/C/T)GT(T/C)(T/C/A)C (N4) G(G/A)(T/A)ACA. Furthermore, SMc02178, SMb20906, SMc04190and SMc00653 promoters were activated by Clr-cAMP/cGMP in Escherichia coli as heterologous host. These findings suggest direct activation of these 7 genes by Clr-cAMP/cGMP.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000356
2016-10-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/10/1840.html?itemId=/content/journal/micro/10.1099/mic.0.000356&mimeType=html&fmt=ahah

References

  1. An S. Q., Chin K. H., Febrer M., McCarthy Y., Yang J. G., Liu C. L., Swarbreck D., Rogers J., Maxwell Dow J. et al.( 2013;). A cyclic GMP-dependent signalling pathway regulates bacterial phytopathogenesis. . EMBO J32:2430–2438. [CrossRef][PubMed]
    [Google Scholar]
  2. Arce-Rodríguez A., Durante-Rodríguez G., Platero R., Krell T., Calles B., de Lorenzo V..( 2012;). The Crp regulator of Pseudomonas putida: evidence of an unusually high affinity for its physiological effector, cAMP. . Environ Microbiol14:702–713. [CrossRef][PubMed]
    [Google Scholar]
  3. Aung H. L., Berney M., Cook G. M..( 2014;). Hypoxia-activated cytochrome bd expression in Mycobacterium smegmatis is cyclic AMP receptor protein dependent. . J Bacteriol196:3091–3097. [CrossRef][PubMed]
    [Google Scholar]
  4. Bahlawane C., McIntosh M., Krol E., Becker A..( 2008;). Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility. . Mol Plant Microbe Interact21:1498–1509. [CrossRef][PubMed]
    [Google Scholar]
  5. Bettenbrock K., Sauter T., Jahreis K., Kremling A., Lengeler J. W., Gilles E. D..( 2007;). Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12. . J Bacteriol189:6891–6900. [CrossRef][PubMed]
    [Google Scholar]
  6. Bringhurst R. M., Gage D. J..( 2002;). Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti. . J Bacteriol184:5385–5392. [CrossRef][PubMed]
    [Google Scholar]
  7. Busby S., Ebright R. H..( 1999;). Transcription activation by catabolite activator protein (CAP). . J Mol Biol293:199–213. [CrossRef][PubMed]
    [Google Scholar]
  8. Cadoret J. C., Rousseau B., Perewoska I., Sicora C., Cheregi O., Vass I., Houmard J..( 2005;). Cyclic nucleotides, the photosynthetic apparatus and response to a UV-B stress in the cyanobacterium Synechocystis sp. PCC 6803. . J Biol Chem280:33935–33944. [CrossRef][PubMed]
    [Google Scholar]
  9. Carlyon R. E., Ryther J. L., VanYperen R. D., Griffitts J. S..( 2010;). FeuN, a novel modulator of two-component signalling identified in Sinorhizobium meliloti. . Mol Microbiol77:170–182. [CrossRef][PubMed]
    [Google Scholar]
  10. Charoenpanich P., Meyer S., Becker A., McIntosh M..( 2013;). Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti. . J Bacteriol195:3224–3236. [CrossRef][PubMed]
    [Google Scholar]
  11. Chen E. J., Fisher R. F., Perovich V. M., Sabio E. A., Long S. R..( 2009;). Identification of direct transcriptional target genes of ExoS/ChvI two-component signaling in Sinorhizobium meliloti. . J Bacteriol191:6833–6842. [CrossRef][PubMed]
    [Google Scholar]
  12. Chen C. H., Lin N. T., Hsiao Y. M., Yang C. Y., Tseng Y. H..( 2010;). Two non-consensus Clp binding sites are involved in upregulation of the gum operon involved in xanthan polysaccharide synthesis in Xanthomonas campestris pv. campestris. . Res Microbiol161:583–589. [CrossRef][PubMed]
    [Google Scholar]
  13. Cuthbertson L., Mainprize I. L., Naismith J. H., Whitfield C..( 2009;). Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in Gram-negative bacteria. . Microbiol Mol Biol Rev73:155–177. [CrossRef][PubMed]
    [Google Scholar]
  14. Dasgupta N., Ferrell E. P., Kanack K. J., West S. E., Ramphal R..( 2002;). fleQ, the gene encoding the major flagellar regulator of Pseudomonas aeruginosa, is σ70 dependent and is downregulated by Vfr, a homolog of Escherichia coli cyclic AMP receptor protein. . J Bacteriol184:5240–5250. [CrossRef][PubMed]
    [Google Scholar]
  15. de Lucena D. K., Pühler A., Weidner S..( 2010;). The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti. . BMC Microbiol10:265. [CrossRef][PubMed]
    [Google Scholar]
  16. Dickstein R., Bisseling T., Reinhold V. N., Ausubel F. M..( 1988;). Expression of nodule-specific genes in alfalfa root nodules blocked at an early stage of development. . Genes Dev2:677–687. [CrossRef][PubMed]
    [Google Scholar]
  17. Domínguez-Ferreras A., Pérez-Arnedo R., Becker A., Olivares J., Soto M. J., Sanjuán J..( 2006;). Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti. . J Bacteriol188:7617–7625. [CrossRef][PubMed]
    [Google Scholar]
  18. Dondrup M., Albaum S. P., Griebel T., Henckel K., Jünemann S., Kahlke T., Kleindt C. K., Küster H., Linke B. et al.( 2009;). EMMA 2 – a MAGE-compliant system for the collaborative analysis and integration of microarray data. . BMC Bioinformatics10:50. [CrossRef][PubMed]
    [Google Scholar]
  19. Dsouza M., Larsen N., Overbeek R..( 1997;). Searching for patterns in genomic data. . Trends Genet13:497–498. [CrossRef][PubMed]
    [Google Scholar]
  20. Galibert F., Finan T. M., Long S. R., Puhler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M. J., Becker A. et al.( 2001;). The composite genome of the legume symbiont Sinorhizobium meliloti. . Science293:668–672. [CrossRef][PubMed]
    [Google Scholar]
  21. Garcia P. P., Bringhurst R. M., Arango Pinedo C., Gage D. J..( 2010;). Characterization of a two-component regulatory system that regulates succinate-mediated catabolite repression in Sinorhizobium meliloti. . J Bacteriol192:5725–5735. [CrossRef][PubMed]
    [Google Scholar]
  22. Glazebrook J., Walker G. C..( 1989;). A novel exopolysaccharide can function in place of the calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. . Cell56:661–672. [CrossRef][PubMed]
    [Google Scholar]
  23. Griffitts J. S., Carlyon R. E., Erickson J. H., Moulton J. L., Barnett M. J., Toman C. J., Long S. R..( 2008;). A Sinorhizobium meliloti osmosensory two-component system required for cyclic glucan export and symbiosis. . Mol Microbiol69:479–490. [CrossRef][PubMed]
    [Google Scholar]
  24. Hellweg C., Pühler A., Weidner S..( 2009;). The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. . BMC Microbiol9:37. [CrossRef][PubMed]
    [Google Scholar]
  25. Imashimizu M., Yoshimura H., Katoh H., Ehira S., Ohmori M..( 2005;). NaCl enhances cellular cAMP and upregulates genes related to heterocyst development in the cyanobacterium, Anabaena sp. strain PCC 7120. . FEMS Microbiol Lett252:97–103. [CrossRef][PubMed]
    [Google Scholar]
  26. Inada T., Takahashi H., Mizuno T., Aiba H..( 1996;). Down regulation of cAMP production by cAMP receptor protein in Escherichia coli: an assessment of the contributions of transcriptional and posttranscriptional control of adenylate cyclase. . Mol Gen Genet253:198–204. [CrossRef][PubMed]
    [Google Scholar]
  27. Jones K. M., Kobayashi H., Davies B. W., Taga M. E., Walker G. C..( 2007;). How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. . Nat Rev Microbiol5:619–633. [CrossRef][PubMed]
    [Google Scholar]
  28. Kasai T., Kouzuma A., Nojiri H., Watanabe K..( 2015;). Transcriptional mechanisms for differential expression of outer membrane cytochrome genes omcA and mtrC in Shewanella oneidensis MR-1. . BMC Microbiol15:68. [CrossRef][PubMed]
    [Google Scholar]
  29. Kimura Y., Mishima Y., Nakano H., Takegawa K..( 2002;). An adenylyl cyclase, CyaA, of Myxococcus xanthus functions in signal transduction during osmotic stress. . J Bacteriol184:3578–3585. [CrossRef][PubMed]
    [Google Scholar]
  30. Kohl T. A., Baumbach J., Jungwirth B., Pühler A., Tauch A..( 2008;). The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. . J Biotechnol135:340–350. [CrossRef][PubMed]
    [Google Scholar]
  31. Krol E., Becker A..( 2004;). Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. . Mol Genet Genomics272:1–17. [CrossRef][PubMed]
    [Google Scholar]
  32. Krol E., Becker A..( 2014;). Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals. . Proc Natl Acad Sci U S A111:10702–10707. [CrossRef][PubMed]
    [Google Scholar]
  33. Kutsukake K..( 1997;). Autogenous and global control of the flagellar master operon, flhD, in Salmonella typhimurium. . Mol Gen Genet254:440–448. [CrossRef][PubMed]
    [Google Scholar]
  34. Marden J. N., Dong Q., Roychowdhury S., Berleman J. E., Bauer C. E..( 2011;). Cyclic GMP controls Rhodospirillum centenum cyst development. . Mol Microbiol79:600–615. [CrossRef][PubMed]
    [Google Scholar]
  35. Mathieu-Demazière C., Poinsot V., Masson-Boivin C., Garnerone A. M., Batut J..( 2013;). Biochemical and functional characterization of SpdA, a 2′,3′cyclic nucleotide phosphodiesterase from Sinorhizobium meliloti. . BMC Microbiol13:268. [CrossRef][PubMed]
    [Google Scholar]
  36. McDonough K. A., Rodriguez A..( 2011;). The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. . Nat Rev Microbiol10:27–38.
    [Google Scholar]
  37. Nanchen A., Schicker A., Revelles O., Sauer U..( 2008;). Cyclic AMP-dependent catabolite repression is the dominant control mechanism of metabolic fluxes under glucose limitation in Escherichia coli. . J Bacteriol190:2323–2330. [CrossRef][PubMed]
    [Google Scholar]
  38. Ochoa De Alda J. A., Ajlani G., Houmard J..( 2000;). Synechocystis strain PCC 6803 cya2, a prokaryotic gene that encodes a guanylyl cyclase. . J Bacteriol182:3839–3842. [CrossRef][PubMed]
    [Google Scholar]
  39. Pellock B. J., Cheng H. P., Walker G. C..( 2000;). Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. . J Bacteriol182:4310–4318. [CrossRef][PubMed]
    [Google Scholar]
  40. Pinedo C. A., Gage D. J..( 2009;). HPrK regulates succinate-mediated catabolite repression in the gram-negative symbiont Sinorhizobium meliloti. . J Bacteriol191:298–309. [CrossRef][PubMed]
    [Google Scholar]
  41. Pini F., De Nisco N. J., Ferri L., Penterman J., Fioravanti A., Brilli M., Mengoni A., Bazzicalupo M., Viollier P. H. et al.( 2015;). Cell cycle control by the master regulator CtrA in Sinorhizobium meliloti. . PLoS Genet11:,e1005232. [CrossRef][PubMed]
    [Google Scholar]
  42. Redfield R. J., Cameron A. D., Qian Q., Hinds J., Ali T. R., Kroll J. S., Langford P. R..( 2005;). A novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzae. . J Mol Biol347:735–747. [CrossRef][PubMed]
    [Google Scholar]
  43. Römling U., Galperin M. Y., Gomelsky M..( 2013;). Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. . Microbiol Mol Biol Rev77:1–52. [CrossRef][PubMed]
    [Google Scholar]
  44. Roychowdhury S., Dong Q., Bauer C. E..( 2015;). DNA-binding properties of a cGMP-binding CRP homologue that controls development of metabolically dormant cysts of Rhodospirillum centenum. . Microbiology161:2256–2264. [CrossRef]
    [Google Scholar]
  45. Ryu M. H., Youn H., Kang I. H., Gomelsky M..( 2015;). Identification of bacterial guanylate cyclases. . Proteins83:799–804. [CrossRef][PubMed]
    [Google Scholar]
  46. Sahonero-Canavesi D. X., Sohlenkamp C., Sandoval-Calderón M., Lamsa A., Pogliano K., López-Lara I. M., Geiger O..( 2015;). Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase. . Environ Microbiol17:3391–3406. [CrossRef][PubMed]
    [Google Scholar]
  47. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A..( 1994;). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. . Gene145:69–73. [CrossRef][PubMed]
    [Google Scholar]
  48. Schäper S., Krol E., Skotnicka D., Kaever V., Hilker R., Søgaard-Andersen L., Becker A..( 2016;). Cyclic di-GMP regulates multiple cellular functions in the symbiotic alphaproteobacterium Sinorhizobium meliloti. . J Bacteriol198:521–535. [CrossRef]
    [Google Scholar]
  49. Schlüter J. P., Reinkensmeier J., Barnett M. J., Lang C., Krol E., Giegerich R., Long S. R., Becker A..( 2013;). Global mapping of transcription start sites and promoter motifs in the symbiotic α-proteobacterium Sinorhizobium meliloti 1021. . BMC Genomics14:156. [CrossRef][PubMed]
    [Google Scholar]
  50. Schwedock J. S., Liu C., Leyh T. S., Long S. R..( 1994;). Rhizobium meliloti NodP and NodQ form a multifunctional sulfate-activating complex requiring GTP for activity. . J Bacteriol176:7055–7064.[PubMed]
    [Google Scholar]
  51. Seok S. H., Im H., Won H. S., Seo M. D., Lee Y. S., Yoon H. J., Cha M. J., Park J. Y., Lee B. J..( 2014;). Structures of inactive CRP species reveal the atomic details of the allosteric transition that discriminates cyclic nucleotide second messengers. . Acta Crystallog D Biol Crystallogr70:1726–1742. [CrossRef]
    [Google Scholar]
  52. Serrania J., Vorhölter F. J., Niehaus K., Pühler A., Becker A..( 2008;). Identification of Xanthomonas campestris pv. campestris galactose utilization genes from transcriptome data. . J Biotechnol135:309–317. [CrossRef][PubMed]
    [Google Scholar]
  53. Shimada T., Fujita N., Yamamoto K., Ishihama A..( 2011;). Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. . PLoS One6:,e20081. [CrossRef][PubMed]
    [Google Scholar]
  54. Sourjik V., Muschler P., Scharf B., Schmitt R..( 2000;). VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti. . J Bacteriol182:782–788. [CrossRef][PubMed]
    [Google Scholar]
  55. Soutourina O., Kolb A., Krin E., Laurent-Winter C., Rimsky S., Danchin A., Bertin P..( 1999;). Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. . J Bacteriol181:7500–7508.[PubMed]
    [Google Scholar]
  56. Stella N. A., Kalivoda E. J., O'Dee D. M., Nau G. J., Shanks R. M..( 2008;). Catabolite repression control of flagellum production by Serratia marcescens. . Res Microbiol159:562–568. [CrossRef][PubMed]
    [Google Scholar]
  57. Tian C. F., Garnerone A. M., Mathieu-Demazière C., Masson-Boivin C., Batut J..( 2012;). Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti–Medicago symbiosis. . Proc Natl Acad Sci U S A109:6751–6756. [CrossRef][PubMed]
    [Google Scholar]
  58. Tsuzuki M., Moskvin O. V., Kuribayashi M., Sato K., Retamal S., Abo M., Zeilstra-Ryalls J., Gomelsky M..( 2011;). Salt stress-induced changes in the transcriptome, compatible solutes, and membrane lipids in the facultatively phototrophic bacterium Rhodobacter sphaeroides. . Appl Environ Microbiol77:7551–7559. [CrossRef][PubMed]
    [Google Scholar]
  59. Won H. S., Lee T. W., Park S. H., Lee B. J..( 2002;). Stoichiometry and structural effect of the cyclic nucleotide binding to cyclic AMP receptor protein. . J Biol Chem277:11450–11455. [CrossRef][PubMed]
    [Google Scholar]
  60. Yang Y. H., Dudoit S., Luu P., Lin D. M., Peng V., Ngai J., Speed T. P..( 2002;). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. . Nucleic Acids Res30:,e15. [CrossRef][PubMed]
    [Google Scholar]
  61. Yao S. Y., Luo L., Har K. J., Becker A., Rüberg S., Yu G. Q., Zhu J. B., Cheng H. P..( 2004;). Sinorhizobium meliloti ExoR and ExoS proteins regulate both succinoglycan and flagellum production. . J Bacteriol186:6042–6049. [CrossRef][PubMed]
    [Google Scholar]
  62. Zheng D., Constantinidou C., Hobman J. L., Minchin S. D..( 2004;). Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. . Nucleic Acids Res32:5874–5893. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000356
Loading
/content/journal/micro/10.1099/mic.0.000356
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error