1887

Abstract

strains produce either glycerol (Gro)- or ribitol (Rbo)-backbone wall teichoic acid (WTA) (Gro-WTA and Rbo-WTA, respectively). The strain WCFS1 has been shown to be able to activate the locus involved in Rbo-WTA synthesis when the locus for Gro-WTA synthesis was mutated, resulting in switching of the native Gro-WTA into Rbo-WTA. Here, we identify a regulator involved in the WTA backbone alditol switching and activation of the locus. Promoter reporter assays of the promoter (P) demonstrated its activity in the Rbo-WTA-producing mutant derivative (Δ) but not in the parental strain WCFS1. An electrophoresis mobility shift assay using a P nucleotide fragment showed that this fragment bound to P-binding protein(s) in a cell-free extract of WCFS1. Three proteins were subsequently isolated using P bound to magnetic beads. These proteins were isolated efficiently from the lysate of WCFS1 but not from the lysate of its Δ derivative, and were identified as redox-sensitive transcription regulator (Lp_0725), catabolite control protein A (Lp_2256) and TetR family transcriptional regulator (Lp_1153). The role of these proteins in P regulation was investigated by knockout mutagenesis, showing that the Δ mutant expressed the gene at a significantly higher level, supporting its role as a repressor of the locus. Notably, the Δ mutation also led to reduced expression of the gene. These results show that Lp_1153 is a regulatory factor that plays a role in WTA alditol switching in WCFS1 and we propose to rename this gene/protein /WasR, for WTA alditol switch regulator.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000229
2016-02-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/2/420.html?itemId=/content/journal/micro/10.1099/mic.0.000229&mimeType=html&fmt=ahah

References

  1. Bron P. A., Benchimol M. G., Lambert J., Palumbo E., Deghorain M., Delcour J., De Vos W. M., Kleerebezem M., Hols P.. ( 2002;). Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl Environ Microbiol 68: 5663–5670 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bron P. A., Tomita S., van Swam I. I., Remus D. M., Meijerink M., Wels M., Okada S., Wells J. M., Kleerebezem M.. ( 2012a;). Lactobacillus plantarum possesses the capability for wall teichoic acid backbone alditol switching. Microb Cell Fact 11: 123 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bron P. A., van Baarlen P., Kleerebezem M.. ( 2012b;). Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 10: 66–78 [PubMed].
    [Google Scholar]
  4. Bron P. A., Tomita S., Mercenier A., Kleerebezem M.. ( 2013;). Cell surface-associated compounds of probiotic lactobacilli sustain the strain-specificity dogma. Curr Opin Microbiol 16: 262–269 [CrossRef] [PubMed].
    [Google Scholar]
  5. Cox J., Mann M.. ( 2008;). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367–1372 [CrossRef] [PubMed].
    [Google Scholar]
  6. Cuthbertson L., Nodwell J. R.. ( 2013;). The TetR family of regulators. Microbiol Mol Biol Rev 77: 440–475 [CrossRef] [PubMed].
    [Google Scholar]
  7. Delcour J., Ferain T., Deghorain M., Palumbo E., Hols P.. ( 1999;). The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie van Leeuwenhoek 76: 159–184 [CrossRef] [PubMed].
    [Google Scholar]
  8. Gasson M. J.. ( 1983;). Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154: 1–9 [PubMed].
    [Google Scholar]
  9. Grant C. E., Bailey T. L., Noble W. S.. ( 2011;). FIMO: scanning for occurrences of a given motif. Bioinformatics 27: 1017–1018 [CrossRef] [PubMed].
    [Google Scholar]
  10. Ince İ.A., Boeren S. A., van Oers M. M., Vervoort J. J. M., Vlak J. M.. ( 2010;). Proteomic analysis of Chilo iridescent virus. Virology 405: 253–258 [CrossRef] [PubMed].
    [Google Scholar]
  11. Josson K., Scheirlinck T., Michiels F., Platteeuw C., Stanssens P., Joos H., Dhaese P., Zabeau M., Mahillon J.. ( 1989;). Characterization of a gram-positive broad-host-range plasmid isolated from Lactobacillus hilgardii. Plasmid 21: 9–20 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kleerebezem M., Boekhorst J., van Kranenburg R., Molenaar D., Kuipers O. P., Leer R., Tarchini R., Peters S. A., Sandbrink H. M., other authors. ( 2003;). Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100: 1990–1995 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kleerebezem M., Hols P., Bernard E., Rolain T., Zhou M., Siezen R. J., Bron P. A.. ( 2010;). The extracellular biology of the lactobacilli. FEMS Microbiol Rev 34: 199–230 [CrossRef] [PubMed].
    [Google Scholar]
  14. Lambert J. M., Bongers R. S., Kleerebezem M.. ( 2007;). Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl Environ Microbiol 73: 1126–1135 [CrossRef] [PubMed].
    [Google Scholar]
  15. Lazarevic V., Abellan F.-X., Möller S. B., Karamata D., Mauël C.. ( 2002;). Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis W23 and 168: identical function, similar divergent organization, but different regulation. Microbiology 148: 815–824 [CrossRef] [PubMed].
    [Google Scholar]
  16. Lee I. C., Tomita S., Kleerebezem M., Bron P. A.. ( 2013;). The quest for probiotic effector molecules – unraveling strain specificity at the molecular level. Pharmacol Res 69: 61–74 [CrossRef] [PubMed].
    [Google Scholar]
  17. Lee I. C., van Swam I. I., Tomita S., Morsomme P., Rolain T., Hols P., Kleerebezem M., Bron P. A.. ( 2014;). GtfA and GtfB are both required for protein O-glycosylation in Lactobacillus plantarum. J Bacteriol 196: 1671–1682 [CrossRef] [PubMed].
    [Google Scholar]
  18. Lu J., Boeren S., de Vries S. C., van Valenberg H. J. F., Vervoort J., Hettinga K.. ( 2011;). Filter-aided sample preparation with dimethyl labeling to identify and quantify milk fat globule membrane proteins. J Proteomics 75: 34–43 [CrossRef] [PubMed].
    [Google Scholar]
  19. Marco M. L., Peters T. H. F., Bongers R. S., Molenaar D., van Hemert S., Sonnenburg J. L., Gordon J. I., Kleerebezem M.. ( 2009;). Lifestyle of Lactobacillus plantarum in the mouse caecum. Environ Microbiol 11: 2747–2757 [CrossRef] [PubMed].
    [Google Scholar]
  20. Micka B., Groch N., Heinemann U., Marahiel M. A.. ( 1991;). Molecular cloning, nucleotide sequence, and characterization of the Bacillus subtilis gene encoding the DNA-binding protein HBsu. J Bacteriol 173: 3191–3198 [PubMed].
    [Google Scholar]
  21. Muscariello L., Marasco R., De Felice M., Sacco M.. ( 2001;). The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum. Appl Environ Microbiol 67: 2903–2907 [CrossRef] [PubMed].
    [Google Scholar]
  22. Neuhaus F. C., Baddiley J.. ( 2003;). A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67: 686–723 [CrossRef] [PubMed].
    [Google Scholar]
  23. Pavan S., Hols P., Delcour J., Geoffroy M. C., Grangette C., Kleerebezem M., Mercenier A.. ( 2000;). Adaptation of the nisin-controlled expression system in Lactobacillus plantarum: a tool to study in vivo biological effects. Appl Environ Microbiol 66: 4427–4432 [CrossRef] [PubMed].
    [Google Scholar]
  24. Platteeuw C., Simons G., de Vos W. M.. ( 1994;). Use of the Escherichia coli β-glucuronidase (gusA) gene as a reporter gene for analyzing promoters in lactic acid bacteria. Appl Environ Microbiol 60: 587–593 [PubMed].
    [Google Scholar]
  25. Rice P., Longden I., Bleasby A.. ( 2000;). EMBOSS: the European molecular biology open software suite. Trends Genet 16: 276–277 [CrossRef] [PubMed].
    [Google Scholar]
  26. Siezen R. J., van Hylckama Vlieg J. E.. ( 2011;). Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microb Cell Fact 10: (Suppl. 1), S3 [CrossRef] [PubMed].
    [Google Scholar]
  27. Siezen R. J., Francke C., Renckens B., Boekhorst J., Wels M., Kleerebezem M., van Hijum S.A.F.T.. ( 2012;). Complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome. J Bacteriol 194: 195–196 [CrossRef] [PubMed].
    [Google Scholar]
  28. Smaczniak C., Li N., Boeren S., America T., van Dongen W., Goerdayal S. S., de Vries S., Angenent G. C., Kaufmann K.. ( 2012;). Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nat Protoc 7: 2144–2158 [CrossRef] [PubMed].
    [Google Scholar]
  29. Stevens M. J. A., Wiersma A., de Vos W. M., Kuipers O. P., Smid E. J., Molenaar D., Kleerebezem M.. ( 2008;). Improvement of Lactobacillus plantarum aerobic growth as directed by comprehensive transcriptome analysis. Appl Environ Microbiol 74: 4776–4778 [CrossRef] [PubMed].
    [Google Scholar]
  30. Tomita S., Irisawa T., Tanaka N., Nukada T., Satoh E., Uchimura T., Okada S.. ( 2010;). Comparison of components and synthesis genes of cell wall teichoic acid among Lactobacillus plantarum strains. Biosci Biotechnol Biochem 74: 928–933 [CrossRef] [PubMed].
    [Google Scholar]
  31. Tomita S., Furihata K., Tanaka N., Satoh E., Nukada T., Okada S.. ( 2012;). Determination of strain-specific wall teichoic acid structures in Lactobacillus plantarum reveals diverse α-d-glucosyl substitutions and high structural uniformity of the repeating units. Microbiology 158: 2712–2723 [CrossRef] [PubMed].
    [Google Scholar]
  32. Tomita S., de Waard P., Bakx E. J., Schols H. A., Kleerebezem M., Bron P. A.. ( 2013;). The structure of an alternative wall teichoic acid produced by a Lactobacillus plantarum WCFS1 mutant contains a 1,5-linked poly(ribitol phosphate) backbone with 2-α-D-glucosyl substitutions. Carbohydr Res 370: 67–71 [CrossRef] [PubMed].
    [Google Scholar]
  33. van Kranenburg R., Marugg J. D., van Swam I. I., Willem N. J., de Vos W. M.. ( 1997;). Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol Microbiol 24: 387–397 [CrossRef] [PubMed].
    [Google Scholar]
  34. Weidenmaier C., Peschel A.. ( 2008;). Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6: 276–287 [CrossRef] [PubMed].
    [Google Scholar]
  35. Wilson K. J., Sessitsch A., Corbo J. C., Giller K. E., Akkermans A. D. L., Jefferson R. A.. ( 1995;). β-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other Gram-negative bacteria. Microbiology 141: 1691–1705 [CrossRef] [PubMed].
    [Google Scholar]
  36. Xia G., Kohler T., Peschel A.. ( 2010;). The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int J Med Microbiol 300: 148–154 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000229
Loading
/content/journal/micro/10.1099/mic.0.000229
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error