1887

Abstract

Prolyl endopeptidases are key enzymes in the digestion of proline-rich proteins. Fungal extracts rich in prolyl endopeptidases produced by a species such as used in food fermentation would be of particular interest for the development of an oral enzyme therapy product in patients affected by intolerance to gluten. Two major secreted prolyl endopeptidases of the MEROPS S28 peptidase family, AoS28A and AoS28B, were identified when this fungus was grown at acidic pH in a medium containing soy meal protein or wheat gliadin as the sole source of nitrogen. AoS28B was produced by 12 reference strains used in food fermentation. AoS28A was secreted by six of these 12 strains. This protease is the orthologue of the previously characterized (AfuS28) and (AN-PEP) prolyl endopeptidases which are encoded by genes with a similar intron–exon structure. Large amounts of secreted AoS28A and AoS28B were obtained by gene overexpression in . AoS28A and AoS28B are endoproteases able to cleave N-terminally blocked proline substrates. Both enzymes very efficiently digested the proline-rich 33-mer of gliadin, the most representative immunotoxic peptide deriving from gliadin, with some differences in terms of specificity and optimal pH. Digestion of the gliadin peptide in short peptides with both enzymes was found to occur from its N terminus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000198
2015-12-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2277.html?itemId=/content/journal/micro/10.1099/mic.0.000198&mimeType=html&fmt=ahah

References

  1. Beauvais A. , Monod M. , Wyniger J. , Debeaupuis J. P. , Grouzmann E. , Brakch N. , Svab J. , Hovanessian A. G. , Latgé J. P. . ( 1997;). Dipeptidyl-peptidase IV secreted by Aspergillus fumigatus, a fungus pathogenic to humans. Infect Immun 65: 3042–3047 [PubMed].
    [Google Scholar]
  2. Bethune M. T. , Strop P. , Tang Y. , Sollid L. M. , Khosla C. . ( 2006;). Heterologous expression, purification, refolding, and structural-functional characterization of EP-B2, a self-activating barley cysteine endoprotease. Chem Biol 13: 637–647 [CrossRef] [PubMed].
    [Google Scholar]
  3. Blinkovsky A. M. , Byun T. , Brown K. M. , Golightly E. J. , Klotz A. V. . ( 2000;). A non-specific aminopeptidase from Aspergillus . Biochim Biophys Acta 1480: 171–181 [CrossRef] [PubMed].
    [Google Scholar]
  4. Borg-von Zepelin M. , Beggah S. , Boggian K. , Sanglard D. , Monod M. . ( 1998;). The expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol Microbiol 28: 543–554 [CrossRef] [PubMed].
    [Google Scholar]
  5. Byun T. , Kofod L. , Blinkovsky A. . ( 2001;). Synergistic action of an X-prolyl dipeptidyl aminopeptidase and a non-specific aminopeptidase in protein hydrolysis. J Agric Food Chem 49: 2061–2063 [CrossRef] [PubMed].
    [Google Scholar]
  6. Cawley N. X. , Olsen V. , Zhang C. F. , Chen H. C. , Tan M. , Loh Y. P. . ( 1998;). Activation and processing of non-anchored yapsin 1 (Yap3p). J Biol Chem 273: 584–591 [CrossRef] [PubMed].
    [Google Scholar]
  7. Chakraborty B. N. , Patterson N. A. , Kapoor M. . ( 1991;). An electroporation-based system for high-efficiency transformation of germinated conidia of filamentous fungi. Can J Microbiol 37: 858–863 [CrossRef] [PubMed].
    [Google Scholar]
  8. Chien H.-C. R. , Lin L.-L. , Chao S.-H. , Chen C.-C. , Wang W.-C. , Shaw C.-Y. , Tsai Y.-C. , Hu H.-Y. , Hsu W.-H. . ( 2002;). Purification, characterization, and genetic analysis of a leucine aminopeptidase from Aspergillus sojae . Biochim Biophys Acta 1576: 119–126 [CrossRef] [PubMed].
    [Google Scholar]
  9. Cove D. J. . ( 1966;). The induction and repression of nitrate reductase in the fungus Aspergillus nidulans . Biochim Biophys Acta 113: 51–56 [CrossRef] [PubMed].
    [Google Scholar]
  10. Doumas A. , van den Broek P. , Affolter M. , Monod M. . ( 1998;). Characterization of the prolyl dipeptidyl peptidase gene (dppIV) from the koji mold Aspergillus oryzae . Appl Environ Microbiol 64: 4809–4815 [PubMed].
    [Google Scholar]
  11. Edens L. , Dekker P. , van der Hoeven R. , Deen F. , de Roos A. , Floris R. . ( 2005;). Extracellular prolyl endoprotease from Aspergillus niger and its use in the debittering of protein hydrolysates. J Agric Food Chem 53: 7950–7957 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kang C. , Yu X.-W. , Xu Y. . ( 2015;). Cloning and expression of a novel prolyl endopeptidase from Aspergillus oryzae and its application in beer stabilization. J Ind Microbiol Biotechnol 42: 263–272 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kim C.-Y. , Quarsten H. , Bergseng E. , Khosla C. , Sollid L. M. . ( 2004;). Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci U S A 101: 4175–4179 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kitamoto N. , Matsui J. , Kawai Y. , Kato A. , Yoshino S. , Ohmiya K. , Tsukagoshi N. . ( 1998;). Utilization of the TEF1-alpha gene (TEF1) promoter for expression of polygalacturonase genes, pgaA and pgaB, in Aspergillus oryzae . Appl Microbiol Biotechnol 50: 85–92 [CrossRef] [PubMed].
    [Google Scholar]
  15. Machida M. , Asai K. , Sano M. , Tanaka T. , Kumagai T. , Terai G. , Kusumoto K. , Arima T. , Akita O. , other authors . ( 2005;). Genome sequencing and analysis of Aspergillus oryzae . Nature 438: 1157–1161 [CrossRef] [PubMed].
    [Google Scholar]
  16. MacKay V. L. , Welch S. K. , Insley M. Y. , Manney T. R. , Holly J. , Saari G. C. , Parker M. L. . ( 1988;). The Saccharomyces cerevisiae BAR1 gene encodes an exported protein with homology to pepsin. Proc Natl Acad Sci U S A 85: 55–59 [CrossRef] [PubMed].
    [Google Scholar]
  17. Monod M. , Jousson O. , Reichard U. . ( 2009;). Aspergillus fumigatus secreted proteases. . In Aspergillus fumigatus and Aspergillosis, pp. 87–106. Edited by Latgé J.-P. , Steinbach W. J. . Washington, DC: American Society for Microbiology;.[CrossRef]
    [Google Scholar]
  18. Nikkuni S. , Nakajima H. , Hoshina S. I. , Ohno M. , Suzuki C. , Kashiwagi Y. , Mori K. . ( 1998;). Evolutionary relationships among Aspergillus oryzae and related species based on the sequences of 18S rRNA genes and internal transcribed spacers. J Gen Appl Microbiol 44: 225–230 [CrossRef] [PubMed].
    [Google Scholar]
  19. Reichard U. , Léchenne B. , Asif A. R. , Streit F. , Grouzmann E. , Jousson O. , Monod M. . ( 2006;). Sedolisins, a new class of secreted proteases from Aspergillus fumigatus with endoprotease or tripeptidyl-peptidase activity at acidic pHs. Appl Environ Microbiol 72: 1739–1748 [CrossRef] [PubMed].
    [Google Scholar]
  20. Sambrook J. , Fritsch E. F. , Maniatis T. . ( 1989;). Molecular Cloning: A Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
    [Google Scholar]
  21. Sarfati J. , Monod M. , Recco P. , Sulahian A. , Pinel C. , Candolfi E. , Fontaine T. , Debeaupuis J. P. , Tabouret M. , Latgé J. P. . ( 2006;). Recombinant antigens as diagnostic markers for aspergillosis. Diagn Microbiol Infect Dis 55: 279–291 [CrossRef] [PubMed].
    [Google Scholar]
  22. Shan L. , Molberg Ø. , Parrot I. , Hausch F. , Filiz F. , Gray G. M. , Sollid L. M. , Khosla C. . ( 2002;). Structural basis for gluten intolerance in celiac sprue. Science 297: 2275–2279 [CrossRef] [PubMed].
    [Google Scholar]
  23. Siegel M. , Bethune M. T. , Gass J. , Ehren J. , Xia J. , Johannsen A. , Stuge T. B. , Gray G. M. , Lee P. P. , Khosla C. . ( 2006;). Rational design of combination enzyme therapy for celiac sprue. Chem Biol 13: 649–658 [CrossRef] [PubMed].
    [Google Scholar]
  24. Sollid L. M. , Qiao S.-W. W. , Anderson R. P. , Gianfrani C. , Koning F. . ( 2012;). Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 64: 455–460 [CrossRef] [PubMed].
    [Google Scholar]
  25. Sriranganadane D. , Waridel P. , Salamin K. , Reichard U. , Grouzmann E. , Neuhaus J. M. , Quadroni M. , Monod M. . ( 2010;). Aspergillus protein degradation pathways with different secreted protease sets at neutral and acidic pH. J Proteome Res 9: 3511–3519 [CrossRef] [PubMed].
    [Google Scholar]
  26. Staib P. , Lermann U. , Blass-Warmuth J. , Degel B. , Würzner R. , Monod M. , Schirmeister T. , Morschhäuser J. . ( 2008;). Tetracycline-inducible expression of individual secreted aspartic proteases in Candida albicans allows isoenzyme-specific inhibitor screening. Antimicrob Agents Chemother 52: 146–156 [CrossRef] [PubMed].
    [Google Scholar]
  27. Stepniak D. , Spaenij-Dekking L. , Mitea C. , Moester M. , de Ru A. , Baak-Pablo R. , van Veelen P. , Edens L. , Koning F. . ( 2006;). Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease. Am J Physiol Gastrointest Liver Physiol 291: G621–G629 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000198
Loading
/content/journal/micro/10.1099/mic.0.000198
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error