1887

Abstract

The thermophilic and are able to use citrate or C-dicarboxylates like fumarate or succinate as the substrates for growth. The genomes of the sequenced strains (nine strains) each encoded a two-component system of the CitA family. The sensor kinase of (termed CitA) was able to replace CitA of (CitA) in a heterologous complementation assay restoring expression of the CitA-dependent reporter gene and anaerobic growth on citrate. Complementation was specific for citrate. The sensor kinase of (termed DcuS) was able to replace DcuS of . It responded in the heterologous expression system to C-dicarboxylates and to citrate, suggesting that DcuS is, like DcuS, a C-dicarboxylate sensor with a side-activity for citrate. DcuS, unlike the homologous DctS from , required no binding protein for function in the complementation assay. Thus, the thermophilic and contain citrate and C-dicarboxylate sensor kinases of the CitA and DcuS type, respectively, and retain function and substrate specificity under mesophilic growth conditions in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000171
2016-01-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/1/127.html?itemId=/content/journal/micro/10.1099/mic.0.000171&mimeType=html&fmt=ahah

References

  1. Asai K., Baik S.-H., Kasahara Y., Moriya S., Ogasawara N.. 2000; Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis . Microbiology146:263–271 [CrossRef][PubMed]
    [Google Scholar]
  2. Bott M.. 1997; Anaerobic citrate metabolism and its regulation in enterobacteria. Arch Microbiol167:78–88 [CrossRef]
    [Google Scholar]
  3. Bott M., Meyer M., Dimroth P.. 1995; Regulation of anaerobic citrate metabolism in Klebsiella pneumoniae . Mol Microbiol18:533–546 [CrossRef][PubMed]
    [Google Scholar]
  4. Brocker M., Schaffer S., Mack C., Bott M.. 2009; Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA . J Bacteriol191:3869–3880 [CrossRef][PubMed]
    [Google Scholar]
  5. Cheung J., Hendrickson W. A.. 2008; Crystal structures of C4-dicarboxylate ligand complexes with sensor domains of histidine kinases DcuS and DctB. J Biol Chem283:30256–30265 [CrossRef][PubMed]
    [Google Scholar]
  6. Davies S. J., Golby P., Omrani D., Broad S. A., Harrington V. L., Guest J. R., Kelly D. J., Andrews S. C.. 1999; Inactivation and regulation of the aerobic C4-dicarboxylate transport (dctA) gene of Escherichia coli . J Bacteriol181:5624–5635[PubMed]
    [Google Scholar]
  7. Dower W. J., Miller J. F., Ragsdale C. W.. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res16:6127–6145 [CrossRef][PubMed]
    [Google Scholar]
  8. Frickey T., Lupas A.. 2004; CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics20:3702–3704 [CrossRef][PubMed]
    [Google Scholar]
  9. Gerharz T., Reinelt S., Kaspar S., Scapozza L., Bott M.. 2003; Identification of basic amino acid residues important for citrate binding by the periplasmic receptor domain of the sensor kinase CitA. Biochemistry42:5917–5924 [CrossRef][PubMed]
    [Google Scholar]
  10. Golby P., Davies S., Kelly D. J., Guest J. R., Andrews S. C.. 1999; Identification and characterization of a two-component sensor-kinase and response-regulator system (DcuS-DcuR) controlling gene expression in response to C4-dicarboxylates in Escherichia coli . J Bacteriol181:1238–1248[PubMed]
    [Google Scholar]
  11. Graf S., Schmieden D., Tschauner K., Hunke S., Unden G.. 2014; The sensor kinase DctS forms a tripartite sensor unit with DctB and DctA for sensing C4-dicarboxylates in Bacillus subtilis . J Bacteriol196:1084–1093 [CrossRef][PubMed]
    [Google Scholar]
  12. Guzman L. M., Belin D., Carson M. J., Beckwith J.. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol177:4121–4130[PubMed]
    [Google Scholar]
  13. Hamblin M. J., Shaw J. G., Kelly D. J.. 1993; Sequence analysis and interposon mutagenesis of a sensor-kinase (DctS) and response-regulator (DctR) controlling synthesis of the high-affinity C4-dicarboxylate transport system in Rhodobacter capsulatus . Mol Gen Genet237:215–224[PubMed]
    [Google Scholar]
  14. Heeb S., Itoh Y., Nishijyo T., Schnider U., Keel C., Wade J., Walsh U., O'Gara F., Haas D.. 2000; Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol Plant Microbe Interact13:232–237 [CrossRef][PubMed]
    [Google Scholar]
  15. Holloway P. W.. 1973; A simple procedure for removal of Triton X-100 from protein samples. Anal Biochem53:304–308 [CrossRef][PubMed]
    [Google Scholar]
  16. Janausch I. G., Garcia-Moreno I., Unden G.. 2002a; Function of DcuS from Escherichia coli as a fumarate-stimulated histidine protein kinase in vitro . J Biol Chem277:39809–39814 [CrossRef][PubMed]
    [Google Scholar]
  17. Janausch I. G., Zientz E., Tran Q. H., Kröger A., Unden G.. 2002b; C4-dicarboxylate carriers and sensors in bacteria. Biochim Biophys Acta1553:39–56 [CrossRef][PubMed]
    [Google Scholar]
  18. Kaspar S., Perozzo R., Reinelt S., Meyer M., Pfister K., Scapozza L., Bott M.. 1999; The periplasmic domain of the histidine autokinase CitA functions as a highly specific citrate receptor. Mol Microbiol33:858–872 [CrossRef][PubMed]
    [Google Scholar]
  19. Kim O. B., Lux S., Unden G.. 2007; Anaerobic growth of Escherichia coli on d-tartrate depends on the fumarate carrier DcuB and fumarase, rather than the l-tartrate carrier TtdT and l-tartrate dehydratase. Arch Microbiol188:583–589 [CrossRef][PubMed]
    [Google Scholar]
  20. Kleefeld A., Ackermann B., Bauer J., Krämer J., Unden G.. 2009; The fumarate/succinate antiporter DcuB of Escherichia coli is a bifunctional protein with sites for regulation of DcuS-dependent gene expression. J Biol Chem284:265–275 [CrossRef][PubMed]
    [Google Scholar]
  21. Kneuper H., Janausch I. G., Vijayan V., Zweckstetter M., Bock V., Griesinger C., Unden G.. 2005; The nature of the stimulus and of the fumarate binding site of the fumarate sensor DcuS of Escherichia coli . J Biol Chem280:20596–20603 [CrossRef][PubMed]
    [Google Scholar]
  22. Krämer J., Fischer J. D., Zientz E., Vijayan V., Griesinger C., Lupas A., Unden G.. 2007; Citrate sensing by the C4-dicarboxylate/citrate sensor kinase DcuS of Escherichia coli: binding site and conversion of DcuS to a C4-dicarboxylate- or citrate-specific sensor. J Bacteriol189:4290–4298 [CrossRef][PubMed]
    [Google Scholar]
  23. Kröger A.. 1980; Bacterial electron transport to fumarate. In Diversity of Bacterial Respiratory Systems pp1–17 Edited by Knowles C. J.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  24. Kröger A., Geisler V., Lemma E., Theis F., Lenger R.. 1992; Bacterial fumarate respiration. Arch Microbiol158:311–314 [CrossRef]
    [Google Scholar]
  25. Landete J. M., García-Haro L., Blasco A., Manzanares P., Berbegal C., Monedero V., Zúñiga M.. 2010; Requirement of the Lactobacillus casei MaeKR two-component system for L-malic acid utilization via a malic enzyme pathway. Appl Environ Microbiol76:84–95 [CrossRef][PubMed]
    [Google Scholar]
  26. Magrane M., UniProt Consortium. 2011; UniProt Knowledgebase: a hub of integrated protein data. Database2011:bar009[CrossRef]
    [Google Scholar]
  27. Manachini P. L., Mora D., Nicastro G., Parini C., Stackebrandt E., Pukall R., Fortina M. G.. 2000; Bacillus thermodenitrificans sp. nov., nom. rev. Int J Syst Evol Microbiol50:1331–1337 [CrossRef][PubMed]
    [Google Scholar]
  28. Miller J. H.. 1992; A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Miroux B., Walker J. E.. 1996; Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol260:289–298 [CrossRef][PubMed]
    [Google Scholar]
  30. Monzel C., Degreif-Dünnwald P., Gröpper C., Griesinger C., Unden G.. 2013; The cytoplasmic PASC domain of the sensor kinase DcuS of Escherichia coli: role in signal transduction, dimer formation, and DctA interaction. MicrobiologyOpen2:912–927 [CrossRef][PubMed]
    [Google Scholar]
  31. Nazina T. N., Tourova T. P., Poltaraus A. B., Novikova E. V., Grigoryan A. A., Ivanova A. E., Lysenko A. M., Petrunyaka V. V., Osipov G. A., other authors. 2001; Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius, G. thermodenitrificans . Int J Syst Evol Microbiol51:433–446 [CrossRef][PubMed]
    [Google Scholar]
  32. Nazina T. N., Lebedeva E. V., Poltaraus A. B., Tourova T. P., Grigoryan A. A., Sokolova D. Sh., Lysenko A. M., Osipov G. A.. 2004; Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. Int J Syst Evol Microbiol54:2019–2024 [CrossRef][PubMed]
    [Google Scholar]
  33. Pappalardo L., Janausch I. G., Vijayan V., Zientz E., Junker J., Peti W., Zweckstetter M., Unden G., Griesinger C.. 2003; The NMR structure of the sensory domain of the membranous two-component fumarate sensor (histidine protein kinase) DcuS of Escherichia coli . J Biol Chem278:39185–39188 [CrossRef][PubMed]
    [Google Scholar]
  34. Reid C. J., Poole P. S.. 1998; Roles of DctA and DctB in signal detection by the dicarboxylic acid transport system of Rhizobium leguminosarum . J Bacteriol180:2660–2669[PubMed]
    [Google Scholar]
  35. Reinelt S., Hofmann E., Gerharz T., Bott M., Madden D. R.. 2003; The structure of the periplasmic ligand-binding domain of the sensor kinase CitA reveals the first extracellular PAS domain. J Biol Chem278:39189–39196 [CrossRef][PubMed]
    [Google Scholar]
  36. Rigaud J. L., Paternostre M. T., Bluzat A.. 1988; Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 2. Incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry27:2677–2688 [CrossRef][PubMed]
    [Google Scholar]
  37. Rigaud J. L., Pitard B., Levy D.. 1995; Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim Biophys Acta1231:223–246 [CrossRef][PubMed]
    [Google Scholar]
  38. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Scheu P. D., Kim O. B., Griesinger C., Unden G.. 2010; Sensing by the membrane-bound sensor kinase DcuS: exogenous versus endogenous sensing of C4-dicarboxylates in bacteria. Future Microbiol5:1383–1402 [CrossRef][PubMed]
    [Google Scholar]
  40. Scheu P. D., Witan J., Rauschmeier M., Graf S., Liao Y. F., Ebert-Jung A., Basché T., Erker W., Unden G.. 2012; CitA/CitB two-component system regulating citrate fermentation in Escherichia coli and its relation to the DcuS/DcuR system in vivo . J Bacteriol194:636–645 [CrossRef][PubMed]
    [Google Scholar]
  41. Sevvana M., Vijayan V., Zweckstetter M., Reinelt S., Madden D. R., Herbst-Irmer R., Sheldrick G. M., Bott M., Griesinger C., Becker S.. 2008; A ligand-induced switch in the periplasmic domain of sensor histidine kinase CitA. J Mol Biol377:512–523 [CrossRef][PubMed]
    [Google Scholar]
  42. Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., other authors. 2011; Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol7:539 [CrossRef][PubMed]
    [Google Scholar]
  43. Steinmetz P. A., Wörner S., Unden G.. 2014; Differentiation of DctA and DcuS function in the DctA/DcuS sensor complex of Escherichia coli: function of DctA as an activity switch and of DcuS as the C4-dicarboxylate sensor. Mol Microbiol94:218–229 [CrossRef][PubMed]
    [Google Scholar]
  44. Studier F. W., Moffatt B. A.. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol189:113–130 [CrossRef][PubMed]
    [Google Scholar]
  45. Tanaka K., Kobayashi K., Ogasawara N.. 2003; The Bacillus subtilis YufLM two-component system regulates the expression of the malate transporters MaeN (YufR) and YflS, and is essential for utilization of malate in minimal medium. Microbiology149:2317–2329 [CrossRef][PubMed]
    [Google Scholar]
  46. Trautwein K., Grundmann O., Wöhlbrand L., Eberlein C., Boll M., Rabus R.. 2012; Benzoate mediates repression of C4-dicarboxylate utilization in “Aromatoleum aromaticum” EbN1. J Bacteriol194:518–528 [CrossRef][PubMed]
    [Google Scholar]
  47. Unden G., Kleefeld A.. 2004; C4-dicarboxylate degradation in aerobic and anaerobic growth. In EcoSal – Escherichia coli and Salmonella: Cellular and Molecular Biology chapter 3.4.5. Edited by R. Curtiss III Washington, DC: American Society for Microbiology;http://www.asmscience.org/content/journal/ecosalplus/1/1
    [Google Scholar]
  48. Valentini M., Storelli N., Lapouge K.. 2011; Identification of C4-dicarboxylate transport systems in Pseudomonas aeruginosa PAO1. J Bacteriol193:4307–4316 [CrossRef][PubMed]
    [Google Scholar]
  49. White P. J.. 1972; The nutrition of Bacillus megaterium and Bacillus cereus . J Gen Microbiol71:505–514 [CrossRef][PubMed]
    [Google Scholar]
  50. Witan J., Bauer J., Wittig I., Steinmetz P. A., Erker W., Unden G.. 2012; Interaction of the Escherichia coli transporter DctA with the sensor kinase DcuS: presence of functional DctA/DcuS sensor units. Mol Microbiol85:846–861 [CrossRef][PubMed]
    [Google Scholar]
  51. Yamamoto H., Murata M., Sekiguchi J.. 2000; The CitST two-component system regulates the expression of the Mg-citrate transporter in Bacillus subtilis . Mol Microbiol37:898–912 [CrossRef][PubMed]
    [Google Scholar]
  52. Zientz E., Bongaerts J., Unden G.. 1998; Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR genes) two-component regulatory system. J Bacteriol180:5421–5425[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000171
Loading
/content/journal/micro/10.1099/mic.0.000171
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error