1887

Abstract

A variety of soil-dwelling bacteria produce polyhydroxybutyrate (PHB), which serves as a source of energy and carbon under nutrient deprivation. Bacteria belonging to the genus do not generally produce PHB but are capable of using the PHB degradation product ()-3-hydroxybutyrate [()-3-HB] as a growth substrate. Essential to this utilization is the NAD-dependent dehydrogenase BdhA that converts ()-3-HB into acetoacetate, a molecule that readily enters central metabolism. Apart from the numerous studies that had focused on the biochemical characterization of BdhA, there was nothing known about the assimilation of ()-3-HB in , including the genetic regulation of expression. This study aimed to define the regulatory factors that govern or dictate the expression of the gene and ()-3-HB assimilation in PAO1. Importantly, expression of the gene was found to be specifically induced by ()-3-HB in a manner dependent on the alternative sigma factor RpoN and the enhancer-binding protein PA2005.This mode of regulation was essential for the utilization of ()-3-HB as a sole source of energy and carbon. However, non-induced levels of expression were sufficient for PAO1 to grow on ( ± )-1,3-butanediol, which is catabolized through an ()-3-HB intermediate. Because this is, we believe, the first report of an enhancer-binding protein that responds to ()-3-HB, PA2005 was named HbcR for ()-3-ydroxyutyrate atabolism egulator.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000163
2015-11-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2232.html?itemId=/content/journal/micro/10.1099/mic.0.000163&mimeType=html&fmt=ahah

References

  1. Akram M.. ( 2013;). A focused review of the role of ketone bodies in health and disease. J Med Food 16: 965–967 [CrossRef] [PubMed].
    [Google Scholar]
  2. Anderson A.J., Dawes E.A.. ( 1990;). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54: 450–472 [PubMed].
    [Google Scholar]
  3. Barrios H., Valderrama B., Morett E.. ( 1999;). Compilation and analysis of σ54-dependent promoter sequences. Nucleic Acids Res 27: 4305–4313 [CrossRef] [PubMed].
    [Google Scholar]
  4. Brashear A., Cook G.A.. ( 1983;). A spectrophotometric, enzymatic assay for d-3-hydroxybutyrate that is not dependent on hydrazine. Anal Biochem 131: 478–482 [CrossRef] [PubMed].
    [Google Scholar]
  5. Buck M., Cannon W.. ( 1992;). Specific binding of the transcription factor sigma-54 to promoter DNA. Nature 358: 422–424 [CrossRef] [PubMed].
    [Google Scholar]
  6. Conway K., Boddy C.N.. ( 2012;). Sigma 54 Promoter Database. . (www.sigma54.ca).
  7. Feller C., Günther R., Hofmann H.J., Grunow M.. ( 2006;). Molecular basis of substrate recognition in d-3-hydroxybutyrate dehydrogenase from Pseudomonas putida. ChemBioChem 7: 1410–1418 [CrossRef] [PubMed].
    [Google Scholar]
  8. Heurlier K., Dénervaud V., Pessi G., Reimmann C., Haas D.. ( 2003;). Negative control of quorum sensing by RpoN (σ54) in Pseudomonas aeruginosa PAO1. J Bacteriol 185: 2227–2235 [CrossRef] [PubMed].
    [Google Scholar]
  9. Huisman G.W., de Leeuw O., Eggink G., Witholt B.. ( 1989;). Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55: 1949–1954 [PubMed].
    [Google Scholar]
  10. Ito K., Nakajima Y., Ichihara E., Ogawa K., Katayama N., Nakashima K., Yoshimoto T.. ( 2006;). D-3-hydroxybutyrate dehydrogenase from Pseudomonas fragi: molecular cloning of the enzyme gene and crystal structure of the enzyme. J Mol Biol 355: 722–733 [CrossRef] [PubMed].
    [Google Scholar]
  11. Jacobs M.A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C., other authors. ( 2003;). Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100: 14339–14344 [CrossRef] [PubMed].
    [Google Scholar]
  12. Jendrossek D., Handrick R.. ( 2002;). Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56: 403–432 [CrossRef] [PubMed].
    [Google Scholar]
  13. Jendrossek D., Schirmer A., Schlegel H.G.. ( 1996;). Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 46: 451–463 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kersters K., De Ley J.. ( 1963;). The oxidation of glycols by acetic acid bacteria. Biochim Biophys Acta 71: 311–331 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kovach M.E., Elzer P.H., Hill D.S., Robertson G.T., Farris M.A., Roop R.M. II, Peterson K.M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175–176 [CrossRef] [PubMed].
    [Google Scholar]
  16. Lu J.N., Tappel R.C., Nomura C.T.. ( 2009;). Mini review: biosynthesis of poly(hydroxyalkanoates). Polym Rev (Phila Pa) 49: 226–248 [CrossRef].
    [Google Scholar]
  17. Lundgren B.R., Thornton W., Dornan M.H., Villegas-Peñaranda L.R., Boddy C.N., Nomura C.T.. ( 2013;). Gene PA2449 is essential for glycine metabolism and pyocyanin biosynthesis in Pseudomonas aeruginosa PAO1. J Bacteriol 195: 2087–2100 [CrossRef] [PubMed].
    [Google Scholar]
  18. Lundgren B.R., Villegas-Peñaranda L.R., Harris J.R., Mottern A.M., Dunn D.M., Boddy C.N., Nomura C.T.. ( 2014;). Genetic analysis of the assimilation of C5-dicarboxylic acids in Pseudomonas aeruginosa PAO1. J Bacteriol 196: 2543–2551 [CrossRef] [PubMed].
    [Google Scholar]
  19. Morett E., Segovia L.. ( 1993;). The sigma 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J Bacteriol 175: 6067–6074 [PubMed].
    [Google Scholar]
  20. Mountassif D., Andreoletti P., Cherkaoui-Malki M., Latruffe N., El Kebbaj M.S.. ( 2010;). Structural and catalytic properties of the d-3-hydroxybutyrate dehydrogenase from Pseudomonas aeruginosa. Curr Microbiol 61: 7–12 [CrossRef] [PubMed].
    [Google Scholar]
  21. Nakajima Y., Ito K., Ichihara E., Ogawa K., Egawa T., Xu Y., Yoshimoto T.. ( 2005;). Crystallization and preliminary X-ray characterization of d-3-hydroxybutyrate dehydrogenase from Pseudomonas fragi. Acta Crystallogr F Struct Biol Cryst Commun 61: 36–38 [CrossRef] [PubMed].
    [Google Scholar]
  22. Paithankar K.S., Feller C., Kuettner E.B., Keim A., Grunow M., Sträter N.. ( 2007;). Cosubstrate-induced dynamics of d-3-hydroxybutyrate dehydrogenase from Pseudomonas putida. FEBS J 274: 5767–5779 [CrossRef] [PubMed].
    [Google Scholar]
  23. Pardee A.B., Jacob F., Monod J.. ( 1959;). The genetic control and cytoplasmic expression of inducibility in the synthesis of β-galactosidase by E. coli. J Mol Biol 1: 165–178 [CrossRef].
    [Google Scholar]
  24. Studholme D.J., Buck M.. ( 2000;). The biology of enhancer-dependent transcriptional regulation in bacteria: insights from genome sequences. FEMS Microbiol Lett 186: 1–9 [CrossRef] [PubMed].
    [Google Scholar]
  25. Tate R.L., Mehlman M.A., Tobin R.B.. ( 1971;). Metabolic fate of 1,3-butanediol in the rat: conversion to β-hydroxybutyrate. J Nutr 101: 1719–1726 [PubMed].
    [Google Scholar]
  26. Timm A., Steinbüchel A.. ( 1990;). Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56: 3360–3367 [PubMed].
    [Google Scholar]
  27. Toyama H., Fujii A., Matsushita K., Shinagawa E., Ameyama M., Adachi O.. ( 1995;). Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols. J Bacteriol 177: 2442–2450 [PubMed].
    [Google Scholar]
  28. Ugwu C.U., Tokiwa Y., Ichiba T.. ( 2011;). Production of (R)-3-hydroxybutyric acid by fermentation and bioconversion processes with Azohydromonas lata. Bioresour Technol 102: 6766–6768 [CrossRef] [PubMed].
    [Google Scholar]
  29. Winsor G.L., Lam D.K., Fleming L., Lo R., Whiteside M.D., Yu N.Y., Hancock R.E., Brinkman F.S.. ( 2011;). Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res 39: D596–D600 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000163
Loading
/content/journal/micro/10.1099/mic.0.000163
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error