1887

Abstract

The lipopeptides ramoplanin from sp. ATCC 33076 and enduracidin produced by are effective antibiotics against a number of drug-resistant Gram-positive pathogens. While these two antibiotics share a similar cyclic peptide structure, comprising 17 amino acids with an -terminal fatty acid side chain, ramoplanin has a di-mannose moiety that enduracidin lacks. The mannosyl substituents of ramoplanin enhance aqueous solubility, which was important in the development of ramoplanin as a potential treatment for infections. In this study we have determined the function of the putative mannosyltransferase encoded by from the ramoplanin biosynthetic gene cluster. Bioinformatics revealed that Ram29 is an integral membrane protein with a putative DxD motif that is suggested to bind to, and activate, a polyprenyl phosphomannose donor and an extracytoplasmic C-terminal domain that is predicted to bind the ramoplanin aglycone acceptor. The gene was cloned into the tetracycline inducible plasmid pMS17 and integrated into the genome of the enduracidin producer . Induction of expression in resulted in the production of monomannosylated enduracidin derivatives, which are not present in the WT strain. Tandem MS analysis showed that mannosylation occurs on the Hpg residue of enduracidin. In addition to confirming the function of Ram29, these findings demonstrate how the less common, membrane-associated, polyprenyl phosphosugar-dependent glycosyltransferases can be used in natural product glycodiversification. Such a strategy may be valuable in future biosynthetic engineering approaches aimed at improving the physico-chemical and biological properties of bioactive secondary metabolites including antibiotics.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000095
2015-07-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1338.html?itemId=/content/journal/micro/10.1099/mic.0.000095&mimeType=html&fmt=ahah

References

  1. Amir-Heidari B., Thirlway J., Micklefield J.. ( 2008;). Auxotrophic-precursor directed biosynthesis of nonribosomal lipopeptides with modified tryptophan residues. Org Biomol Chem 6: 975–978 [CrossRef] [PubMed].
    [Google Scholar]
  2. Berg S., Starbuck J., Torrelles J.B., Vissa V.D., Crick D.C., Chatterjee D., Brennan P.J.. ( 2005;). Roles of conserved proline and glycosyltransferase motifs of EmbC in biosynthesis of lipoarabinomannan. J Biol Chem 280: 5651–5663 [CrossRef] [PubMed].
    [Google Scholar]
  3. Berg S., Kaur D., Jackson M., Brennan P.J.. ( 2007;). The glycosyltransferases of Mycobacterium tuberculosis – roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology 17: 35R–56R [CrossRef] [PubMed].
    [Google Scholar]
  4. Bernsel A., Viklund H., Falk J., Lindahl E., von Heijne G., Elofsson A.. ( 2008;). Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci U S A 105: 7177–7181 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bibb M.J., Janssen G.R., Ward J.M.. ( 1985;). Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38: 215–226 [CrossRef] [PubMed].
    [Google Scholar]
  6. Birch H.L., Alderwick L.J., Rittmann D., Krumbach K., Etterich H., Grzegorzewicz A., McNeil M.R., Eggeling L., Besra G.S.. ( 2009;). Identification of a terminal rhamnopyranosyltransferase (RptA) involved in Corynebacterium glutamicum cell wall biosynthesis. J Bacteriol 191: 4879–4887 [CrossRef] [PubMed].
    [Google Scholar]
  7. Borghi A., Ferrari P., Gallo G.G., Zanol M., Zerilli L.F., Lancini G.C.. ( 1991;). Microbial de-mannosylation and mannosylation of teicoplanin derivatives. J Antibiot (Tokyo) 44: 1444–1451 [CrossRef] [PubMed].
    [Google Scholar]
  8. Castiglione F., Marazzi A., Meli M., Colombo G.. ( 2005;). Structure elucidation and 3D solution conformation of the antibiotic enduracidin determined by NMR spectroscopy and molecular dynamics. Magn Reson Chem 43: 603–610 [CrossRef] [PubMed].
    [Google Scholar]
  9. Chen J.-S., Wang Y.-X., Shao L., Pan H.-X., Li J.-A., Lin H.-M., Dong X.-J., Chen D.-J.. ( 2013;). Functional identification of the gene encoding the enzyme involved in mannosylation in ramoplanin biosynthesis in Actinoplanes sp. Biotechnol Lett 35: 1501–1508 [CrossRef] [PubMed].
    [Google Scholar]
  10. Cudic P., Behenna D.C., Kranz J.K., Kruger R.G., Wand A.J., Veklich Y.I., Weisel J.W., McCafferty D.G.. ( 2002;). Functional analysis of the lipoglycodepsipeptide antibiotic ramoplanin. Chem Biol 9: 897–906 [CrossRef] [PubMed].
    [Google Scholar]
  11. Di Palo S., Gandolfi R., Jovetic S., Marinelli F., Romano D., Molinari F.. ( 2007;). A new bacterial mannosidase for the selective modification of ramoplanin and its derivatives. Enzyme Microb Technol 41: 806–811 [CrossRef].
    [Google Scholar]
  12. Fang X., Tiyanont K., Zhang Y., Wanner J., Boger D., Walker S.. ( 2006;). The mechanism of action of ramoplanin and enduracidin. Mol Biosyst 2: 69–76 [CrossRef] [PubMed].
    [Google Scholar]
  13. Hamburger J.B., Hoertz A.J., Lee A., Senturia R.J., McCafferty D.G., Loll P.J.. ( 2009;). A crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface. Proc Natl Acad Sci U S A 106: 13759–13764 [CrossRef] [PubMed].
    [Google Scholar]
  14. He H.. ( 2005;). Mannopeptimycins, a novel class of glycopeptide antibiotics active against Gram-positive bacteria. Appl Microbiol Biotechnol 67: 444–452 [CrossRef] [PubMed].
    [Google Scholar]
  15. Hobbs G., Frazer C.M., Gardner D.C.J., Cullum J.A., Oliver S.G.. ( 1989;). Dispersed growth of Streptomyces in liquid culture. Appl Microbiol Biotechnol 31: 272–277.
    [Google Scholar]
  16. Hofmann K., Stoffel W.. ( 1993;). tmbase – A database of membrane spanning protein segments. Biol Chem Hoppe Seyler 374: 166.
    [Google Scholar]
  17. Kieser T., Bibb M.J., Buttner M.J., Chater K.F., Hopwood D.A.. ( 2000;). Practical Streptomyces Genetics., Norwich: The John Innes Foundation;.
    [Google Scholar]
  18. Lewis R.A., Nunns L., Thirlway J., Carroll K., Smith C.P., Micklefield J.. ( 2011;). Active site modification of the β-ketoacyl-ACP synthase FabF3 of Streptomyces coelicolor affects the fatty acid chain length of the CDA lipopeptides. Chem Commun (Camb) 47: 1860–1862 [CrossRef] [PubMed].
    [Google Scholar]
  19. Liu J., Mushegian A.. ( 2003;). Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci 12: 1418–1431 [CrossRef] [PubMed].
    [Google Scholar]
  20. MacNeil D.J., Gewain K.M., Ruby C.L., Dezeny G., Gibbons P.H., MacNeil T.. ( 1992;). Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111: 61–68 [CrossRef] [PubMed].
    [Google Scholar]
  21. Magarvey N.A., Haltli B., He M., Greenstein M., Hucul J.A.. ( 2006;). Biosynthetic pathway for mannopeptimycins, lipoglycopeptide antibiotics active against drug-resistant Gram-positive pathogens. Antimicrob Agents Chemother 50: 2167–2177 [CrossRef] [PubMed].
    [Google Scholar]
  22. Mahlert C., Kopp F., Thirlway J., Micklefield J., Marahiel M.A.. ( 2007;). Stereospecific enzymatic transformation of α-ketoglutarate to (2S,3R)-3-methyl glutamate during acidic lipopeptide biosynthesis. J Am Chem Soc 129: 12011–12018 [CrossRef] [PubMed].
    [Google Scholar]
  23. McCafferty D.G., Cudic P., Frankel B.A., Barkallah S., Kruger R.G., Li W.. ( 2002;). Chemistry and biology of the ramoplanin family of peptide antibiotics. Biopolymers 66: 261–284 [CrossRef] [PubMed].
    [Google Scholar]
  24. Milne C., Powell A., Jim J., Al Nakeeb M., Smith C.P., Micklefield J.. ( 2006;). Biosynthesis of the (2S,3R)-3-methyl glutamate residue of nonribosomal lipopeptides. J Am Chem Soc 128: 11250–11259 [CrossRef] [PubMed].
    [Google Scholar]
  25. Möller S., Croning M.D., Apweiler R.. ( 2001;). Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17: 646–653 [CrossRef] [PubMed].
    [Google Scholar]
  26. Neary J.M., Powell A., Gordon L., Milne C., Flett F., Wilkinson B., Smith C.P., Micklefield J.. ( 2007;). An asparagine oxygenase (AsnO) and a 3-hydroxyasparaginyl phosphotransferase (HasP) are involved in the biosynthesis of calcium-dependent lipopeptide antibiotics. Microbiology 153: 768–776 [CrossRef] [PubMed].
    [Google Scholar]
  27. Nogami I., Shirafuji H., Matsumura S.. ( 1984;). Production of enduracidin and micro-organisms therefor. US Patent 4465771.
  28. Powell A., Al Nakeeb M., Wilkinson B., Micklefield J.. ( 2007a;). Precursor-directed biosynthesis of nonribosomal lipopeptides with modified glutamate residues. Chem Commun (Camb) (26), 2683–2685 [CrossRef] [PubMed].
    [Google Scholar]
  29. Powell A., Borg M., Amir-Heidari B., Neary J.M., Thirlway J., Wilkinson B., Smith C.P., Micklefield J.. ( 2007b;). Engineered biosynthesis of nonribosomal lipopeptides with modified fatty acid side chains. J Am Chem Soc 129: 15182–15191 [CrossRef] [PubMed].
    [Google Scholar]
  30. Rodríguez-García A., Combes P., Pérez-Redondo R., Smith M.C.A., Smith M.C.M.. ( 2005;). Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria Streptomyces. Nucleic Acids Res 33: e87 [CrossRef] [PubMed].
    [Google Scholar]
  31. Shirling E.B., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16: 313–340 [CrossRef].
    [Google Scholar]
  32. Skovierová H., Larrouy-Maumus G., Pham H., Belanová M., Barilone N., Dasgupta A., Mikusová K., Gicquel B., Gilleron M., other authors. ( 2010;). Biosynthetic origin of the galactosamine substituent of arabinogalactan in Mycobacterium tuberculosis. J Biol Chem 285: 41348–41355 [CrossRef] [PubMed].
    [Google Scholar]
  33. Song F., Guan Z., Raetz C.R.H.. ( 2009;). Biosynthesis of undecaprenyl phosphate-galactosamine and undecaprenyl phosphate-glucose in Francisella novicida. Biochemistry 48: 1173–1182 [CrossRef] [PubMed].
    [Google Scholar]
  34. Sosio M., Stinchi S., Beltrametti F., Lazzarini A., Donadio S.. ( 2003;). The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by Nonomuraea species. Chem Biol 10: 541–549 [CrossRef] [PubMed].
    [Google Scholar]
  35. Sosio M., Kloosterman H., Bianchi A., de Vreugd P., Dijkhuizen L., Donadio S.. ( 2004;). Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiology 150: 95–102 [CrossRef] [PubMed].
    [Google Scholar]
  36. Thirlway J., Lewis R., Nunns L., Al Nakeeb M., Styles M., Struck A.W., Smith C.P., Micklefield J.. ( 2012;). Introduction of a non-natural amino acid into a nonribosomal peptide antibiotic by modification of adenylation domain specificity. Angew Chem Int Ed Engl 51: 7181–7184 [CrossRef] [PubMed].
    [Google Scholar]
  37. Tusnády G.E., Simon I.. ( 2001;). The hmmtop transmembrane topology prediction server. Bioinformatics 17: 849–850 [CrossRef] [PubMed].
    [Google Scholar]
  38. Uguru G.C., Milne C., Borg M., Flett F., Smith C.P., Micklefield J.. ( 2004;). Active-site modifications of adenylation domains lead to hydrolysis of upstream nonribosomal peptidyl thioester intermediates. J Am Chem Soc 126: 5032–5033 [CrossRef] [PubMed].
    [Google Scholar]
  39. Viklund H., Elofsson A.. ( 2004;). Best α-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci 13: 1908–1917 [CrossRef] [PubMed].
    [Google Scholar]
  40. Viklund H., Elofsson A.. ( 2008;). octopus: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24: 1662–1668 [CrossRef] [PubMed].
    [Google Scholar]
  41. Walker S., Chen L., Hu Y., Rew Y., Shin D., Boger D.L.. ( 2005;). Chemistry and biology of ramoplanin: a lipoglycodepsipeptide with potent antibiotic activity. Chem Rev 105: 449–476 [CrossRef] [PubMed].
    [Google Scholar]
  42. Wehmeier S., Varghese A.S., Gurcha S.S., Tissot B., Panico M., Hitchen P., Morris H.R., Besra G.S., Dell A., Smith M.C.M.. ( 2009;). Glycosylation of the phosphate binding protein, PstS, in Streptomyces coelicolor by a pathway that resembles protein O-mannosylation in eukaryotes. Mol Microbiol 71: 421–433 [CrossRef] [PubMed].
    [Google Scholar]
  43. Wilkinson B., Micklefield J.. ( 2007;). Mining and engineering natural-product biosynthetic pathways. Nat Chem Biol 3: 379–386 [CrossRef] [PubMed].
    [Google Scholar]
  44. Wu M.C., Law B., Wilkinson B., Micklefield J.. ( 2012;). Bioengineering natural product biosynthetic pathways for therapeutic applications. Curr Opin Biotechnol 23: 931–940 [CrossRef] [PubMed].
    [Google Scholar]
  45. Yin X., Zabriskie T.M.. ( 2006;). The enduracidin biosynthetic gene cluster from Streptomyces fungicidicus. Microbiology 152: 2969–2983 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000095
Loading
/content/journal/micro/10.1099/mic.0.000095
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error