1887

Abstract

The growth behaviour of using various concentrations of benzoate was investigated. In batch culture, growth was exponential and growth rate (μ) and yields () were high [μ = 0.51 h and = 0.56 mol carbon (mol carbon)] when low concentrations of benzoate (< 5 mM) were used. These kinetic parameters were close to the maxima determined in a benzoate-limited chemostat [μ = 0.55 h and = 0.57 mol carbon (mol carbon)] and the part of the energy for maintenance was limited ( = 4.3 ± 2.2 mmol ATP g h). When higher concentrations of benzoate were used (up to 40 mM), several metabolic limitations appeared. The specific rate of benzoate consumption was not altered, whereas growth was inhibited [i (benzoate) # 27 mM]. Furthermore, high concentrations of catechol together with some 1,2-dihydro-1,2-dihydroxybenzoate (DHB) transiently accumulated in the medium. The accumulation of catechol was attributed to limiting flux through catechol 1,2-dioxygenase estimated to be 5-2 mmol g h, whereas that of DHB was provoked by an imbalance in the NADH/NAD intracellular content. The direct consequence of DHB accumulation was the induction of the pathway for the degradation of catechol, and this pathway contributed up to 20% of the total flux of catechol to the central metabolism. Finally, when very high concentrations of benzoate were used (55 mM), both growth and the specific rate of benzoate degradation were diminished due to a strong decrease in benzoate 1,2-dioxygenase specific activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-7-1807
1996-07-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/7/mic-142-7-1807.html?itemId=/content/journal/micro/10.1099/13500872-142-7-1807&mimeType=html&fmt=ahah

References

  1. Ampe F., Lindley N. D. 1995; Acetate utilization is inhibited by benzoate in Alcaligenes eutrophus:. evidence for transcriptional control of the expression of aco E coding for acetyl-CoA synthetase.. J Bacterio1 177:5826–5833
    [Google Scholar]
  2. Bedard D. L., Harbel M. L., May R. J., Brennan M. J. 1987; Evidence for novel mechanisms of polychlorinated biphenyl metabolism by Alcaligenes eutrophus H850.. Appl Environ Microbiol 53:1103–1112
    [Google Scholar]
  3. Cocaign-Bousquet M., Lindley N. D. 1995; Pyruvate overflow and carbon flux within central metabolic pathways of Cornyebac- terium glutamicum during growth on lactate.. Enzyme Microb Technol 17:260–267
    [Google Scholar]
  4. Dois M., Ampe F., Lindley N. D. 1994 Effects of oxygen limitations on benzoate degradation by Alcaligenes eutrophus IAWQ 17th Biennial Conference, July 94, Budapest, Hungary.
    [Google Scholar]
  5. Don R. H., Weightman A. J., Knackmuss H.-J., Timmis K. N. 1985; Transposon mutagenesis and cloning analysis of the pathway for the degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4). J Bacteriol 161:85–90
    [Google Scholar]
  6. Duetz W. A., Marques S., de Jong C., Ramos J. L., van Andel J.G. 1994; Inducibility of the TOL catabolic pathways in Pseudomonas putida (pWWO) growing on succinate in continuous culture : evidence of carbon catabolite repression control. J Bacteriol 176:2354–2361
    [Google Scholar]
  7. Elvidge J. A., Lindstead R. P., Sims P., Orkin B. A. 1950; The third isomeric (cis-trans) muconic acid.. J Chem Soc2235–2241
    [Google Scholar]
  8. Farr D.R., Cain R. B. 1968; Catechol oxygenase induction in Pseudomonas aeruginosa.. Biochem J 106:879–885
    [Google Scholar]
  9. Girbal L., Soucaille P. 1994; Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady- state continuous cultures: role of NADH/NAD ratio and ATP pool. J Bacteriol 176:6433–6438
    [Google Scholar]
  10. Haldane J.B.S. 1965 Enzymes Boston, MA: MIT Press;
    [Google Scholar]
  11. Hein S., Steinb Uchel A. 1994; Biochemical and molecular characterization of the Alcaligenes eutrophus pyruvate dehydrogenase complex and identification of a new type of dihydrolipoamide dehydrogenase. J Bacteriol 176:4394–4408
    [Google Scholar]
  12. Herrero A. A., Gomez R. F., Snedecor B., Tolman C. J., Roberts M. F. 1985; Growth inhibition of Clostridium thermocellum by carboxylic acids : a mechanism based on uncoupling by weak acids. Appl Microbiol Biotechnol 22:53–62
    [Google Scholar]
  13. Hill G.A., Robinson C. W. 1975; Substrate inhibition kinetics: phenol degradation by Pseudomonas putida. Biotechnol Bioeng 17:1599–1615
    [Google Scholar]
  14. Holms W.H. 1986; The central metabolic pathways of Escherichia coli:, relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Curr Top Cell Regul 28:69–105
    [Google Scholar]
  15. Holtel A., Marques S., Möhler I., Jakubzik U., Timmis K. N. 1994; Carbon source-dependent inhibition of xyl operon expression of the Pseudomonas putida TOL plasmid. J Bacteriol 176:1773–1776
    [Google Scholar]
  16. Hughes E.J, L. and Bayly R. C. 1983; Control of the meta- cleavage pathway of Alcaligenes eutrophus. J Bacteriol 154:1363–1370
    [Google Scholar]
  17. Ingraham J. L., Maaloe O., Neidhart F. C. 1983 Growth of the Bacterial Cell Sunderland, MA: Sinauer Associates Inc;
    [Google Scholar]
  18. Johnson B.F., Stanier R. Y. 1971a; Dissimilation of aromatic compounds by Alcaligenes eutrophus. J Bacteriol 107:468–475
    [Google Scholar]
  19. Johnson B.F., Stanier R. Y. 1971b; Regulation of the ß- ketoadipate pathway in Alcaligenes eutrophus. J Bacteriol 107:476–485
    [Google Scholar]
  20. Kataeva I.A., Golovleva L. A. 1990; Catechol-2,3-dioxygenase from Pseudomonas aeruginosa 2x.. Methods Ensymol 188:115–121
    [Google Scholar]
  21. Le Bloas P., Guilbert N., Loubière P., Lindley N. D. 1993; Growth inhibition and pyruvate overflow during glucose metabolism of Eubacterium limosum are related to a limited capacity to reassimilate C02 by the acetyl-CoA pathway. J Gen Microbiol 139:1861–1868
    [Google Scholar]
  22. Luli G.W., Strahl W. R. 1984; Comparison of growth, acetate production and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl Environ Microbiol 56:1004–1011
    [Google Scholar]
  23. MacGregor C.H., Wolff J. A., Arora S. K., Hylemon P. B., Phibbs P. V. 1992; Catabolite repression control in Pseudomonas aeruginosa.. In Pseudomonas: Molecular Biology and Biotechnology pp. 198–206 Edited by Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Maloy S. R., Bohlander M., Nunn W. D. 1980; Elevated levels of glyoxylate shunt enzymes in Escherichia coli strains constitutive for fatty acid degradation. J Bacteriol 143:720–725
    [Google Scholar]
  25. Mandelstam J., Jacoby G. A. 1965; Induction and multi-sensitive end-product repression in the enzymatic pathway de-grading mandelate in Pseudomonas fluorescens.. Biochem J 94:569–577
    [Google Scholar]
  26. Meagher R. B., Ngai K. L., Ornston L. N. 1990; Muconate cycloisomerase. Methods Ensymol 188:126–130
    [Google Scholar]
  27. Neidle E.L., Ornston L. N. 1990; Catechol and chlorocatechol 1,2- dioxygenase.. Methods Ensymol 188:122–126
    [Google Scholar]
  28. Oberlies G., Fuchs G., Thauer R. K. 1980; Acetate thiokinase and the assimilation of acetate in Methanobacterium thermoauto-trophicum. Arch Microbiol 128:248–252
    [Google Scholar]
  29. Ornston L.N. 1966; The conversion of catechol and proto- catechuate to a-ketoadipate by Pseudomonas putida. IV. Regulation. J Biol Chem 241:3800–3810
    [Google Scholar]
  30. Ornston L.N. 1970; Conversion of catechol and protocatechuate to /Lketoadipate (Pseudomonas putida). Methods Ensymol 17A:529–549
    [Google Scholar]
  31. Pieper D. H., Engesser K.-H, Don R. H., Timmis K. N., Knackmuss H.-J. 1985; Modified or/Áo-cleavage pathway in Alcaligenes eutrophus JMP134 for the degradation of 4-methyl- catechol. FEMS Microbiol Lett 29:63–67
    [Google Scholar]
  32. Pirt S.J. 1975 Principles of microbe and cell cultivation Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  33. Rasul-Chaudhry G., Chapalmadugu S. 1991; Biodégradation of organic halogenated compounds. Microbiol Rev 55:59–79
    [Google Scholar]
  34. Reiner A.M. 1971; Metabolism of benzoic acid by bacteria : 3,5- cyclohexadiene-l,2-diol-l-carboxylic acid is an intermediate in the formation of catechol. J Bacteriol 108:89–94
    [Google Scholar]
  35. Reiner A.M. 1972; Metabolism of aromatic compounds in bacteria. Purification and properties of the catechol-forming enzyme, 3,5-cyclohexadiene-l,2-diol-l-carboxylic acid (NAD+) oxi- doreductase (decarboxylating). J Biol Chem 247:4960–4965
    [Google Scholar]
  36. Reiner A.M., Hegeman G. D. 1971; Metabolism of benzoic acid by bacteria. Accumulation of ( — )-3,5-cyclohexadiene-l,2-diol-O-carboxylic acid by a mutant strain of Alcaligenes eutrophus.. Biochemistry 10:2530–2536
    [Google Scholar]
  37. Salmond C. V., Kroll R. G., Booth I. R. 1984; The effect of food preservatives on pH homeostasis in Escherichia coli. J Gen Microbiol 130:2845–2850
    [Google Scholar]
  38. Sauret-gnazi G., Gagnon J., Béguin C., Barrelle M., Markowicz Y., Pelmont J., Toussaint A. 1996; Characterisation of a chromosome encoded catechol-1,2-dioxygenase (EC 1.13.11.1) from Alcaligenes eutrophus CH34.. Arch Microbiol (in press)
    [Google Scholar]
  39. Schlömann M., Hartnett G. B., Ornston L. N. 1991 Use of the Acinetobacter transformation system for the cloning of degradative genes from Alcaligenes eutrophus pp. 33: In Pseudomonas 1991. Third International Symposium on Pseudomonads. Biology and Biotechnology. Triest, Italy, 16-20 June 1991. Book of Abstracts 133
    [Google Scholar]
  40. Snoep J. L., Teixeira de Mattos M.J., Starrenburg M. J. C., Hugenholtz J. 1992; Isolation, characterization and physiological role of the pyruvate dehydrogenase complex and a-acetolactate synthase of Lactococcus lactis subsp. lactis by. diacetylactis. J Bacteriol 174:4838–4841
    [Google Scholar]
  41. Springael D., Kreps S., Mergeay M. 1993; Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chloro- biphenyl degradation genes in Alcaligenes eutrophus A5. J Bacteriol 175:1674–1681
    [Google Scholar]
  42. Stanier R.Y., Ornston L. N. 1973; The beta-ketoadipate pathway. Adv Microbiol Physiol 9:89–151
    [Google Scholar]
  43. Steinbüchel A., Schlegel H. G. 1991; Physiological and molecular genetics of poly(/?-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 5:535–542
    [Google Scholar]
  44. Vallino J., Stephanopoulos G. 1990; Intracellular flux analysis as means of identifying limiting nodes in amino acid fermentations. In Biotechnology pp. 1063–1066 Edited by Christiansen C., Munck L., Villadsen J. Copenhagen: Munksgaard International Publisher;
    [Google Scholar]
  45. Wang G., Wang D. I. C. 1984; Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Appl Environ Microbiol 47:294–298
    [Google Scholar]
  46. Yamagushi M., Fujisawa H. 1978; Characterization of NADH- cytochrome c reductase, a component of benzoate 1,2-dioxygenase system from Pseudomonas arvilla C-1. J Biol Chem 253:8848–8853
    [Google Scholar]
  47. Yamagushi M., Fujisawa H. 1982; Subunit structure of oxygenase component in benzoate 1,2-dioxygenase system from Pseudomonas arvilla C-1. J Biol Chem 257:12497–12502
    [Google Scholar]
  48. Yang R.D., Humphrey A. E. 1975; Dynamic and steady state studies of phenol biodégradation in pure and mixed cultures.. Biotechnol Bioengll1211–1235
    [Google Scholar]
  49. Zhou E., Crawford R. L. 1995; Effects of oxygen, nitrogen and temperature on gasoline biodégradation in soil. Biodégradation 6:127–140
    [Google Scholar]
/content/journal/micro/10.1099/13500872-142-7-1807
Loading
/content/journal/micro/10.1099/13500872-142-7-1807
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error