1887

Abstract

Genomic DNA libraries of ISP5230 and of a mutant blocked at the chlorination step of chloramphenicol biosynthesis were probed by hybridization with a synthetic oligonucleotide corresponding to the N-terminal amino acid sequence of a bromoperoxidase-catalase purified from the wild-type strain. Hybridizing fragments obtained from the two strains were cloned and sequenced. Analysis of the nucleotide sequences demonstrated that the fragments contained the same 1449 bp open reading frame with no differences in nucleotide sequence. The deduced polypeptide encoded 483 amino acids with a calculated of 54200; the N-terminal sequence was identical to that of the bromoperoxidase-catalase purified from wild-type Comparison of the amino acid sequence predicted for the cloned bromoperoxidase-catalase gene () with database protein sequences showed a significant similarity to a group of prokaryotic and eukaryotic catalases, but none to other peroxidases or haloperoxidases. Replacement of the gene in the wild-type strain of with a copy disrupted by insertion of a DNA fragment encoding apramycin resistance did not prevent chloramphenicol production. The results suggest that the role of the enzyme in is related to its activity as a catalase rather than as a halogenating agent.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-3-657
1996-03-01
2021-07-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/3/mic-142-3-657.html?itemId=/content/journal/micro/10.1099/13500872-142-3-657&mimeType=html&fmt=ahah

References

  1. Aidoo D. A., Barrett K., Vining L. C. 1990; Plasmid transformation of Streptomyces venezuelae: modified procedures used to introduce the gene(s) for p-aminobenzoate synthase. J Gen Microbiol 136:657–662
    [Google Scholar]
  2. Baltz R. H. 1990; Gene expression using streptomycetes. Curr Opinion Biotechnol 1:1–12
    [Google Scholar]
  3. Bantleon R., Altenbuchner J., van Pée K.-H. 1994; Chloroperoxidase from Streptomyces lividans: isolation and characterization of the enzyme and the corresponding gene. J Bacteriol 176:2339–2347
    [Google Scholar]
  4. Beers R. F., Sizer I. W. 1952; A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140
    [Google Scholar]
  5. Bell G. I., Najarian R. C., Mullenbach G. T., Hallewell R. A. 1986; cDNA sequence coding for human kidney catalase. Nucleic Acids Res 14:5561–5562
    [Google Scholar]
  6. Bibb M. J., Cohen S. N. 1982; Gene expression in Streptomyces: construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol & Gen Genet 187:265–277
    [Google Scholar]
  7. Bishai W. R., Smith H. O., Barcak G. J. 1994; A peroxide/ ascorbate-inducible catalase from Haemophilus influenzae is homologous to the Escherichia coli katE gene product. J Bacteriol 176:2914–2921
    [Google Scholar]
  8. Bol D. K., Yasbin R. E. 1991; The isolation, cloning and identification of a vegetative catalase gene from Bacillus subtilis . Gene 109:31–37
    [Google Scholar]
  9. Carter P., Bedouelle H., Winter G. 1985; Improved oligonucleotide site-directed mutagenesis using Ml3 vectors. Nucleic Acids Res 13:4431–4443
    [Google Scholar]
  10. Dias G. A., Wayne L. G. 1974; Isolation and characterization of catalase produced by M. tuberculosis . Annu Rev Respir Dis 110:312–319
    [Google Scholar]
  11. Doull J. L., Ahmed Z., Stuttard C., Vining L. C. 1985; Isolation and characterization of Streptomyces venezuelae mutants blocked in chloramphenicol biosynthesis. J Gen Microbiol 131:97–104
    [Google Scholar]
  12. Enquist L. W., Bradley S. G. 1971; Characterization of deoxyribonucleic acid from Streptomyces venezuelae spores. Dev Ind Microbiol 12:225–236
    [Google Scholar]
  13. Fita I., Rossmann M. G. 1985; The active center of catalase. J Mol Biol 185:21–37
    [Google Scholar]
  14. Goldberg I., Hochman A. 1989; Purification of a novel type of catalase from the bacterium Klebsiella pneumoniae . Biochim Biophys Acta 991:330–336
    [Google Scholar]
  15. Han L., Yang K., Ramalingam E., Mosher R. H., Vining L. C. 1994; Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiology 140:3379–3389
    [Google Scholar]
  16. Hopwood D. A., Kieser T., Wright H. M., Bibb M. J. 1983; Plasmids, recombination and chromosome mapping in Streptomyces lividans 66. J Gen Microbiol 129:2257–2269
    [Google Scholar]
  17. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  18. Kieser T. 1984; Factors affecting the isolation of ccc DNA from Streptomyces lividans and Escherichia coli . Plasmid 12:19–36
    [Google Scholar]
  19. Kim H., Lee J. S., Hah Y. C., Roe J. H. 1994; Characterization of the major catalase from Streptomyces coelicolor ATCC 10147. Microbiology 140:3391–3397
    [Google Scholar]
  20. Knoch M. 1988 Haloperoxidasen aus einem Chloramphenicol-produ- Zierenden Streptomyces venezuelae-Stamm und einer nichtproduzierenden Mutante Dissertation, Institut fiir Mikrobiologie, Universitat Hohenheim; Germany:
    [Google Scholar]
  21. Knoch M., van Pée K.-H., Vining L. C., Lingens F. 1989; Purification, properties and immunological detection of a bromo- peroxidase-catalase from Streptomyces venezuelae and from a chloram- phenciol-nonproducing mutant. J Gen Microbiol 135:2493–2502
    [Google Scholar]
  22. Larson J. L., Hershberger C. L. 1986; The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA. Plasmid 15:199–209
    [Google Scholar]
  23. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68
    [Google Scholar]
  24. Malik V. S., Vining L. C. 1970; Metabolism of chloramphenicol by the producing organism. Can J Microbiol 16:173–179
    [Google Scholar]
  25. Maurer H. R. 1964 Disk-Elektrophorese: Theorie and Praxis der diskontinuierlichen Polyacrylamidgelelektrophorese Berlin: Walter de Gruyter;
    [Google Scholar]
  26. Morris D. R., Hager L. P. 1966; Chloroperoxidase 1. Isolation and properties of the crystalline glycoprotein. J Biol Chem 241:1763–1768
    [Google Scholar]
  27. Nadler V., Goldberg I., Hochman A. 1986; Comparative study of bacterial catalases. Biochim Biophys Acta 882234–241
    [Google Scholar]
  28. Neidleman S. L., Geigert J. 1986 Biohalogenation: Principles, Basic Roles and Applications Chichester: Ellis Horwood;
    [Google Scholar]
  29. Nies D., Schlegel H. G. 1982; Catalase from Comamonas compransoris . J Gen Appl Microbiol 28:311–319
    [Google Scholar]
  30. Paradkar A. S., Stuttard C., Vining L. C. 1993; Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes. J Gen Microbiol 139:687–694
    [Google Scholar]
  31. van Pée K.-H. 1988; Molecular cloning and high-level expression of a bromoperoxidase gene from Streptomyces aureofaciens Tü24. J Bacteriol 170:5890–5894
    [Google Scholar]
  32. van Pée K.-H., Lingens F. 1984; Detection of a bromoperoxidase in Streptomyces phaeochromogenes . FEBS Lett 173:5–8
    [Google Scholar]
  33. van Pée K.-H., Lingens F. 1985; Purification and molecular and catalytic properties of bromoperoxidase from Streptomyces phaeochromogenes . J Gen Microbiol 131:1911–1916
    [Google Scholar]
  34. Rocha E. R., Smith C. J. 1995; Biochemical and genetic analyses of a catalase from the anaerobic bacterium Bacteroides fragilis . J Bacteriol 177:3111–3119
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  37. Schroeder W. A., Shelton J. R., Shelton J. B., Robberson B., Apell G., Fang R. S., Bonaventura J. 1982; The complete amino acid sequence of bovine liver catalase and the partial sequence of bovine erythrocyte catalase. Arch Biochem Biophys 214:397–421
    [Google Scholar]
  38. Shaffer J. B., Preston K. E., Shepard B. A. 1990; Nucleotide and deduced amino acid sequences of mouse catalase: molecular analysis of a low activity mutant. Nucleic Acids Res 18:4941
    [Google Scholar]
  39. Shine J., Dalgarno L. 1974; The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 711342–1346
    [Google Scholar]
  40. Stanzak R., Matushima P., Baltz R. H., Rao R. N. 1986; Cloning and expression in Streptomyces lividans of clustered erythro-mycin biosynthesis genes from Streptomyces erythreus . Bio / Technology 4:229–232
    [Google Scholar]
  41. Strohl W. R. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20:961–974
    [Google Scholar]
  42. Strunz G. M. 1984; Microbial chlorine-containing metabolites. In Handbook of Microbiology. , 2. 5 Microbial Products749–773 Laskin A. I., Lechevalier H. A. Boca Raton, FL: CRC Press;
    [Google Scholar]
  43. Stuttard C. 1982; Temperate phages of Streptomyces venezuelae: lysogeny and host specificity shown by phages SV1 and SV2. J Gen Microbiol 128:115–121
    [Google Scholar]
  44. Tinoco I. Jr, Borer P. N., Dengler B., Levine M. D., Uhlenbeck O. C., Crothers D. M., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 246:40–41
    [Google Scholar]
  45. Vining L. C., Westlake D. W. S. 1984; Chloramphenicol: properties, biosynthesis and fermentation. In Biotechnology of Industrial Antibiotics387–411 Vandamme E. J. New York: Marcel Dekker;
    [Google Scholar]
  46. Walker G. E., Dunbar B., Hunter I. S., Nimmo H. G., Coggins J. R. 1995; A catalase from Streptomyces coelicolor A3(2). Microbiology 141:1377–1383
    [Google Scholar]
  47. Ward J. M., Janssen G. R., Kieser T., Bibb M. J., Buttner M. J., Bibb M. J. 1986; Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol & Gen Genet 203:468–478
    [Google Scholar]
  48. Wright F., Bibb M. J. 1992; Codon usage in the G + C-rich Streptomyces genome. Gene 113:55–65
    [Google Scholar]
  49. Yanisch-Perron C., ., Vieira J., Messing J. 1985; Improved Ml3 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–109
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-3-657
Loading
/content/journal/micro/10.1099/13500872-142-3-657
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error