1887

Abstract

Summary: Monocins in were induced by UV-irradiation of liquid cultures, and defective phage particles were purified from the lysates. Electron microscopy showed flexible, non-contractile bacteriophage-tail-like particles, consisting of specific proteins of molecular mass 20-45 kDa and pl 4.6-6.7. These particles were able to lyse listerial cells. DNA sequence homologies between chromosomal DNA of monocin-producing strains and labelled phage DNAs were inferred from DNA/DNA hybridizations, suggesting that most of the prophage DNA is still present in the listerial chromosome. An endolysin gene was cloned from listerial chromosomal DNA and was identified by its expression of lytic activity against cells in a bioassay. The gene consists of 864 nt encoding a protein of 287 aa with a calculated molecular mass of 32975 Da (CPL2438). This is in good agreement with the size of a protein observed in SDS-PAGE after overexpression of the lytic protein in . The nucleotide sequence of a putative holin gene (, 291 nt) upstream of was determined after PCR-amplification of listerial DNA and it shows typical features common to the holin gene family. Expression of the encoded protein (HOL2438, 95 aa, 10.1 kDa) in was found to be lethal for the host cells. The results underline the close relationship between monocins and intact bacteriophages, indicating that monocins are incompletely assembled phage particles derived from cryptic prophages of , probably including the phage lysin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-141-10-2577
1995-10-01
2021-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/141/10/mic-141-10-2577.html?itemId=/content/journal/micro/10.1099/13500872-141-10-2577&mimeType=html&fmt=ahah

References

  1. Arendt E.K., Daly C., Fitzgerald G.F., van de Guchte M. 1994; Molecular characterization of lactococcal bacteriophage Tuc2009 and identification and analysis of genes encoding lysin, a putative holin, and two structural proteins.. Appl Environ Microbiol 60:1875–1883
    [Google Scholar]
  2. Bradley D.E. 1967; Ultrastructure of bacteriophages and bacteri- ocins.. Bacteriol Rev 31:230–314
    [Google Scholar]
  3. Bradley D.E., Dewar C.A. 1966; The structure of phage-like objects associated with non-induced bacteriocinogenic bacteria.. J Gen Microbiol 45:399–408
    [Google Scholar]
  4. Curtis G.D.W., Mitchell R.G. 1992; Bacteriocin (monocin) interactions among Listeria monocytogenes strains.. Int J Food Microbiol 16:283–292
    [Google Scholar]
  5. Dower W.J., Miller J.F., Ragsdale C.W. 1988; High efficiency transformation of E. coli by high voltage electroporation.. Nucleic Acids Res 16:6127–6145
    [Google Scholar]
  6. Foster S.J. 1993; Analysis of Bacillus subtilis 168 prophage- associated lytic enzymes; identification and characterization of CWLA-related prophage proteins.. J Gen Microbiol 139:3177–3184
    [Google Scholar]
  7. Garro A.J., Marmur J. 1970; Defective bacteriophages.. J Cell Physiol 76:253–264
    [Google Scholar]
  8. Hamon Y., P#x00E9;ron Y. 1963; Etude du pouvoir bacteriocinogene dans le genre Listeria. . Ann Inst Pasteur 104:55–65
    [Google Scholar]
  9. Henrich B., Binishofer B., Bläsi U. 1995; Primary structure and functional analysis of the lysis genes of Lactobacillus gasseri bacteriophage фadh.. J Bacteriol 177:723–732
    [Google Scholar]
  10. Higerd T.B., Baechler C.A., Berk R.S. 1969; Morphological studies on relaxed and contracted forms of purified pyocin particles.. J Bacteriol 98:1378–1389
    [Google Scholar]
  11. Hoover D.G. 1992; Bacteriocins: activities and applications.. In Encyclopedia of Microbiology 1 pp 181–190 Edited by Lederberg J. New York: Academic Press;
    [Google Scholar]
  12. Ishii S.I., Nishi Y., Egami F. 1965; The fine structure of a pyocin.. J Mol Biol 3:428–431
    [Google Scholar]
  13. Ito S.I., Nishimune T., Abe M., Kimoto M., Hayashi R. 1986; Bacteriocin-like killing action of a temperate bacteriophage phiBAl of Bacillus aneurinolyticus. . J Virol 59:103–111
    [Google Scholar]
  14. Loessner M.J. 1991; Improved procedure for bacteriophage typing of Listeria strains and evaluation of new phages.. Appl Environ Microbiol 57:882–884
    [Google Scholar]
  15. Loessner M.J., Busse M. 1990; Bacteriophage typing of Listeria species.. Appl Environ Microbiol 56:1912–1918
    [Google Scholar]
  16. Loessner M.J., Estela L.A., Zink R., Scherer S. 1994a; Taxonomical classification of 20 newly isolated Listeria bacteriophages by electron microscopy and protein analysis.. Intervirology 37:31–35
    [Google Scholar]
  17. Loessner M.J., Krause I.B., Henle T., Scherer S. 1994b; Structural proteins and DNA characteristics of 14 Listeria typing bacteriophages.. J Gen Virol 15:701–710
    [Google Scholar]
  18. Loessner M.J., Schneider A., Scherer S. 1995a; A new procedure for efficient recovery of DNA, RNA, and proteins from Listeria cells by rapid lysis with a recombinant bacteriophage endolysin.. Appl Environ Microbiol 61:1150–1152
    [Google Scholar]
  19. Loessner M.J., Wendlinger G., Scherer S. 1995b; Heterogenous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the Siphoviral lysis cassettes.. Mol Microbiol 16:1231–1241
    [Google Scholar]
  20. Longchamp P.F., Mauë C., Karamata D. 1994; Lytic enzymes with defective prophages of bacillus subtilis-. sequencing and characterization of the region comprising the N-acetylmuramoyl-l- alanine amidase gene of prophage PBSX.. Microbiology 140:1855–1867
    [Google Scholar]
  21. Medoff G., Swartz M.N. 1969; Induction of a defective phage and DNA methylation in Escherichia coli 15t .. J Gen Virol 4:15–27
    [Google Scholar]
  22. Mollerach M.E., Ogueta S.B., De Torres R.A. 1988; Production of Linnocuicina 819, a bacteriocin produced by Listeria innocua. . Microbiologica 11:219–224
    [Google Scholar]
  23. Moody M.F. 1967; Structure of the sheath of bacteriophage T4.. J Mol Biol 25:167–200
    [Google Scholar]
  24. Ortel S. 1978; Untersuchungen fiber Monocine.. Zentralbl Bakteriol Hyg 1 Abt Orig A 242:72–78
    [Google Scholar]
  25. Reeves P. 1972; The bacteriocins.. Mol Biol Biochem Biophys 11:
    [Google Scholar]
  26. Reichle R.E., Lewin R.A. 1967; Purification and structure of rhapidosomes.. Can J Microbiol 14:211–213
    [Google Scholar]
  27. Sambrook J., Fritsch E.F., Maniatis T. 1989 In Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Shearman C., Jury K., Gasson M. 1994; Controlled expression and structural organization of a Lactococcus lactis bacteriophage lysin encoded by two overlapping genes.. Appl Environ Microbiol 60:3063–3073
    [Google Scholar]
  29. Shinomiya T., Shiga S. 1979; Bacteriocidal activity of the tail of Pseudomonas aeruginosa bacteriophage PS 17.. J Virol 32:958–967
    [Google Scholar]
  30. Steensma H.Y. 1981; Adsorption of the defective phage PBSZ 1 to Bacillus subtilis 168WT.. J Gen Virol 52:93–101
    [Google Scholar]
  31. Steensma H.Y., Robertson L.A. 1978; Lysogeny in Bacillus. . FEMS Microbiol Lett 3:313–317
    [Google Scholar]
  32. Steensma H.Y., Robertson L.A., Van Elsas J.D. 1978; The occurrence and taxonomic values of PBSX-like defective phages in the genus Bacillus. . Antonie Leeuwenhoek 44:353–366
    [Google Scholar]
  33. Steiner M., Lubitz W., Bläsi U. 1993; The missing link in phage lysis of gram-positive bacteria: gene 14 of Bacillus subtilis phage phi 29 encodes the functional homolog of lambda S protein.. J Bacteriol 175:1038–1042
    [Google Scholar]
  34. Sword C.P., Pickett M.J. 1961; The isolation and characterization of bacteriophages from Listeria monocytogenes. . J Gen Microbiol 25:241–248
    [Google Scholar]
  35. Tagg J.R., Dajani A.S., Wannamaker L.W. 1976; Bacteriocins of gram-positive bacteria.. Bacteriol Rev 40:722–756
    [Google Scholar]
  36. Wilhelms D., Sandow D. 1989; Preliminary studies on monocine typing of Listeria monocytogenes strains.. Acta Microbiol Hung 36:235–238
    [Google Scholar]
  37. Wood H.E., Dawson M.T., Devine K.M., McConnell D.J. 1990; Characterization of PBSX, a defective prophage of Bacillus subtilis. . J Bacteriol 172:2667–2674
    [Google Scholar]
  38. Yamamoto K.R., Alberts B.M., Benzinger R., Lawhorne L., Treiber G. 1970; Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification.. Virology 40:734–744
    [Google Scholar]
  39. Young R. 1992; Bacteriophage lysis: mechanism and regulation.. Microbiol Rev 56:430–481
    [Google Scholar]
  40. Zink R., Loessner M.J. 1992; Classification of virulent and temperate bacteriophages of Listeria spp. on the basis of mor-phology and protein analysis.. Appl Environ Microbiol 58:296–302
    [Google Scholar]
  41. Zink R., Loessner M.J., Glas I., Scherer S. 1994; Supplementary Listeria-typing with defective Listeria-phage particles (monocins).. Lett Appl Microbiol 19:99–101
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-141-10-2577
Loading
/content/journal/micro/10.1099/13500872-141-10-2577
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error