1887

Abstract

We have cloned a gene, which encodes a cyclic nucleotide phosphodiesterase (PDEase), by complementation in a PDEase-deficient mutant. The deduced amino acid sequence is similar to that of the low-affinity PDEase of (PDE1) and the cyclic nucleotide PDEase (PD) of . Biochemical analysis of recombinant protein produced in indicated that the enzyme behaves as a PDE1 homologue: it hydrolyses both cAMP ( = 0·49 mM) and cGMP ( = 0·25 mM), does not require divalent cations for maximal activity and is only moderately inhibited by millimolar concentrations of standard PDEase inhibitors. Based on these data, we designate the we have cloned, . Low-stringency genomic Southern blots showed cross-hybridization between and DNA from , but not with DNA from or several closely related species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-7-1533
1994-07-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/7/mic-140-7-1533.html?itemId=/content/journal/micro/10.1099/13500872-140-7-1533&mimeType=html&fmt=ahah

References

  1. Barns S.M., Lane D.J., Sogin M.L., Bibeau C., Weisburg W.G. Evolutionary relationships among pathogenic Candida species and relatives. J Bacteriol 1991; 173:2250–2255
    [Google Scholar]
  2. Beavo J.A., Reifsnyder D.H. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci 1990; 11:150–155
    [Google Scholar]
  3. Birnboim H.C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Rm 1979; 7:1513–1523
    [Google Scholar]
  4. Broach J.R. Construction of high copy yeast vectors using 2-nm circle sequences. Methods Enzymol 1983; 101:307–325
    [Google Scholar]
  5. Cantore M.L., Galvagno M.A., Passeron S. Variations in the levels of cyclic adenosine S'A'-monophosphate and in the activities of adenylate cyclase and cyclic adenosine 3'-5'-mono-phosphate phosphodiesterase during aerobic morphogenesis of Mucor rouxii. Arch Biochem Biophys 1980; 199:312–320
    [Google Scholar]
  6. Charbonneau H., Beier N., Walsh K.A., Beavo J.A. Identification of a conserved domain among cyclic nucleotide phosphodiesterases from diverse species. Proc Natl Acad Sci USA 1986; 83:9308–9312
    [Google Scholar]
  7. Chattaway F.W., Wheeler P.R., O’Reilly J. Involvement of adenosine 3',5'-cyclic monophosphate in the germination of blastospores of Candida albicans. J Gen Microbiol 1981; 123:233–240
    [Google Scholar]
  8. Cleland W.W. Statistical analysis of enzyme kinetic data. Methods Enzymol 1979; 63:103–138
    [Google Scholar]
  9. Colicelli J., Birchmeier C., Michaeli T., O’Neill K., Riggs M., Wigler M. Expression of three mammalian cDNAs that interfere with RAS function in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1989; 86:3599–3603
    [Google Scholar]
  10. Davis C.W., Daly J.W. A simple direct assay of 3',5'-cyclic nucleotide phosphodiesterase activity based on the use of polyacrylamide-boronate affinity gel chromatography. J Cyclic Nucleotide Res 1979; 5:65–74
    [Google Scholar]
  11. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 1984; 12:387–395
    [Google Scholar]
  12. Egidy G.A., Paveto M.C., Passeron S., Galvagno M.A. Relationship between cyclic adenosine 3',5'-monophosphate and germination in Candida albicans. Exp My col 1989; 13:428–432
    [Google Scholar]
  13. Egidy G., Paveto C., Passeron S., Galvagno M.A. cAMP levels and in situ measurement of cAMP related enzymes during yeast-to-hyphae transition in Candida albicans. Cell Biol Int Rep 1990; 14:59–68
    [Google Scholar]
  14. Fujimoto M., Ichikawa A., Tomita K. Purification and properties of adenosine 3',5'-monophosphate phosphodiesterase from Baker’s yeast. Arch Biochem Biophys 1974; 161:54–63
    [Google Scholar]
  15. Gunasekaran M., Hughes W.T., Maguire W.J. Cyclic 3',5'-nucleotide phosphodiesterase of Candida albicans. Microbios Lett 1976; 3:47–53
    [Google Scholar]
  16. Hamilton R., Watanabe C.K., De Boer H.A. Compilation and comparison of the sequence context around the AUG start codons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res 1987; 15:3581–93
    [Google Scholar]
  17. Hicks J.B., Herskowitz I. Interconversion of yeast mating types I Direct observations of the action of the homothallism (HO) gene. Genetics 1976; 83:245–258
    [Google Scholar]
  18. Hill J.E., Myers A.M., Koerner T.J., Tzagoloff A. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 1986; 2:163–167
    [Google Scholar]
  19. Hinnen A., Hicks J.B., Fink G.R. Transformation of yeast. Proc Natl Acad Sci USA 1978; 75:1929–1933
    [Google Scholar]
  20. Ito H., Fukuda Y., Murata K., Kimura A. T ransformation of intact yeast cells treated with alkali cations. J Bacteriol 1983; 153:163–168
    [Google Scholar]
  21. Kessin R.H., Orlow S.J., Shapiro R.I., Franke J. Binding of inhibitor alters kinetic and physical properties of extracellular cAMP phosphodiesterase from Dictyostelium discoideum. Proc Natl Acad Sci USA 1979; 76:5450–5454
    [Google Scholar]
  22. Kraft R., Tardiff J., Krauter K.S., Leinwand L.A. Using mini-prep plasmid DNA for sequencing double stranded templates with Sequenases. BioTechniques 1988; 6:544–547
    [Google Scholar]
  23. Kwon-Chung K.J., Hicks J.B., Lipke P.N. Evidence that Candida stellatoidea type II is a mutant of Candida albicans that does not express sucrose-inhibitable a-glucosidase. Infect Immun 1990; 58:2804–2808
    [Google Scholar]
  24. Lacombe M.-L., Podgorski G.J., Franke J., Kessin R.H. Molecular cloning and developmental expression of the cyclic nucleotide phosphodiesterase gene of Dictyostelium discoideum. J Biol Chem 1986; 261:16811–16817
    [Google Scholar]
  25. Landschulz W.H., Johnson P.F., McKnight S.L. The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 1989; 243:1681–1688
    [Google Scholar]
  26. Larsen A.D., Sypherd P.S. Cyclic adenosine 3-5-monophosphate and morphogenesis in Mucor racemosus. J Bacteriol 1974; 117:432–438
    [Google Scholar]
  27. Leuker C.E., Hahn A.-M., Ernst J.F. β-Galactosidase of Kluyveromyces lactis (Lac4p) as reporter of gene expression in Candida albicans and C. tropicalis. Mol and Gen Genet 1992; 235:235–241
    [Google Scholar]
  28. Livi G.P., Ferrara A., Roskin R., Simon P.L., Young P.R. Secretion of N-glycosylated human recombinant interleukin-1 a in Saccharomyces cerevisiae. Gene 1990; 88:297–301
    [Google Scholar]
  29. Londesborough J. Soluble and membrane-bound cyclic AMP diesterase activity with a low Michaelis constant in Baker’s yeast. FEBS Lett 1975; 50:283–287
    [Google Scholar]
  30. Londesborough J. Activity of cyclic-AMP phosphodiesterase in permeabilised cells of Baker’s yeast. Eur I Biochem 1982; 126:631–637
    [Google Scholar]
  31. Londesborough J., Suoranta K. The zinc-containing high-Km cyclic nucleotide phosphodiesterase of Bakers yeast. J Biol Chem 1983; 258:2966–2972
    [Google Scholar]
  32. Maresca B., Medoff G., Schlessinger D., Kobayashi G.S., Medoff J. Regulation of dimorphism in the pathogenic fungus Histoplasma capsulatum. Nature 1977; 266:447–448
    [Google Scholar]
  33. McHale M.M., Cieslinski L.B., Eng W.K., Johnson R.K., Torphy T.J., Livi G.P. Expression of human recombinant cAMP phosphodiesterase isozyme IV reverses growth arrest phenotypes in phosphodiesterase-deficient yeast. Mol Pharmacol 1991; 39:109–113
    [Google Scholar]
  34. McLaughlin M.M., Cieslinski L.B., Burman M., Torphy T.J., Livi G.P. A low-Km, rolipram-sensitive, cAMP-specific phosphodiesterase from human brain. Cloning and expression of cDNA, biochemical characterization of recombinant protein, and tissue distribution of mRNA. J Biol Chem 1993; 268:6470–6476
    [Google Scholar]
  35. Michaeli T., Bloom T.J., Martins T., Loughney K., Ferguson K., Riggs M., Rogers L., Beavo J.A., Wigler M. Isolation and characterization of a previously undetected human cAMP phosphodiesterase by complementation of cAMP phospho-diesterase-deficient Saccharomyces cerevisiae. J Biol Chem 1993; 268:12925–12932
    [Google Scholar]
  36. Niimi M., Niimi K., Tokunaga J., Nakayama H. Changes in cyclic nucleotide levels and dimorphic transition in Candida albicans. J Bacteriol 1980; 143:1010–1014
    [Google Scholar]
  37. Nikawa J.-l., Sass P., Wigler M. Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol Cell Biol 1987; 7:3629–3636
    [Google Scholar]
  38. Nussinov R. Sequence signals in eukaryotic upstream regions. Critical Rev Biochem Mol Biol 1990; 25:185–224
    [Google Scholar]
  39. Odds F.C. Morphogenesis in Candida albicans. CRC Crit Rev Microbiol 1985; 12:45–93
    [Google Scholar]
  40. Pall M.L. Adenosine 3',5'-phosphate in fungi. Microbiol Rev 1981; 45:462–480
    [Google Scholar]
  41. Paveto C., Epstein A., Passeron S. Studies on cyclic adenosine 3',5'-monophosphate levels, adenylate cyclase and phosphodiesterase activities in the dimorphic fungus Mucor rouxii. Arch Biochem Biophys 1975; 169:449–457
    [Google Scholar]
  42. Paznokas J.L., Sypherd P.S. Respiratory capacity, cyclic adenosine 3',5'-monophosphate, and morphogenesis of Mucor racemosus. J Bacteriol 1975; 124:134–139
    [Google Scholar]
  43. Podgorski G.J., Franke J., Faure M., Kessin R.H. The cyclic nucleotide phosphodiesterase gene of Dictyostelium discoideum utilizes alternate promoters and splicing for the synthesis of multiple mRNAs. Mol Cell Biol 1989; 9:3938–3950
    [Google Scholar]
  44. Proudfoot N.J., Brownlee G.G. 3' non-coding region sequences in eukaryotic messenger RNA. Nature 1976; 263:211–214
    [Google Scholar]
  45. Rosenbluh A., Mevarech M., Koltin Y., Gorman J.A. Isolation of genes from Candida albicans by complementation in Saccharomyces cerevisiae. Mol and Gen Genet 1985; 200:500–502
    [Google Scholar]
  46. Sabie F.T., Gadd G.M. Effect of nucleosides and nucleotides and the relationship between cellular adenosine 3',5'- cyclic monophosphate (cyclic AMP) and germ tube formation in Candida albicans. Mycopathologia 1992; 119:147–156
    [Google Scholar]
  47. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd edn 1989 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  48. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467
    [Google Scholar]
  49. Sass P., Field J., Nikawa J., Toda T., Wigler M. Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1986; 83:9303–9307
    [Google Scholar]
  50. Shepherd M.G. Morphogenesis in Candida albicans. In Candida albicans Cellular and Molecular Biology 1991 Edited by Prasad R. Berlin: Springer-Verlag; pp 5–19
    [Google Scholar]
  51. Sherman F., Fink G.R., Hicks J.B. Laboratory Course Manual for Methods in Yeast Genetics 1986 Cold Spring Harbor: Cold Spring Harbor Laboratory;
    [Google Scholar]
  52. Sobel J.D., Muller G., Buckley H.R. Critical role of germ tube formation in the pathogenesis of Candida vaginitis. Infect Immun 1984; 44:576–580
    [Google Scholar]
  53. Stoker N.G., Pratt J.M., Holland I.B. In vivo gene expression systems in prokaryotes. In Transcription and Translation. A Practical Approach 1984 Edited by Hames B.D., Higgins S.J. Oxford: IRL Press; pp 153–177
    [Google Scholar]
  54. Sullivan P.A., Chiew Y.Y., Molloy C., Templeton M.D., Shepherd M.G. An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation. Can J Microbiol 1983; 29:1514–1525
    [Google Scholar]
  55. Suoranta K., Londesborough J. Purification of intact and nicked forms of a zinc-containing, Mg++-dependent, low-Jkm cyclic AMP phosphodiesterase from Bakers yeast. J Biol Chem 1984; 259:6964–6971
    [Google Scholar]
  56. Torphy T.J., Cieslinski L.B. Characterization and selective inhibition of cyclic nucleotide phosphodiesterase isozymes in canine tracheal smooth muscle. Mol Pharmacol 1990; 37:206–214
    [Google Scholar]
  57. Van Ments-Cohen M., Haastert P.J.M. The cyclic nucleotide specificity of eight cAMP-binding proteins in Dictyostelium discoideum is correlated into three groups. J Biol Chem 1989; 264:8717–8722
    [Google Scholar]
  58. Wilson R.B., Tatchell K. SRA5 encodes the low-Km cyclic AMP phosphodiesterase of Saccharomyces cerevisiae. Mol Cell Biol 1988; 8:505–510
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-7-1533
Loading
/content/journal/micro/10.1099/13500872-140-7-1533
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error