1887

Abstract

Summary: -Lactamases (EC. 3.5.2.6) can be directly compared by analytical isoelectric focusing. Using this technique, 242 strains from five Gram-positive and 16 Gram-negative genera were examined. A preparation of each strain focused as a single group of bands which did not match the pattern of any R factor-associated -lactamase. None of the strains was known to carry an R factor and resistance transfer experiments were unsuccessful. The enzymes studied were therefore thought to be chromosomally mediated. The isoelectric points ranged from 3·9 to 8·7 and were not related to the substrate profiles or other biochemical properties. The chromosomal -lactamases appeared to be specific for genus, species and sub-species, and strains that produced identical -lactamases had identical bacterial characteristics. Correlation of bacteriological differences with differences in -lactamase patterns is discussed with particular reference to strains of and spp. Since -lactamases may be universally produced by bacteria, separation of the enzymes by analytical isoelectric focusing could be used in bacterial taxonomy.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-94-1-55
1976-05-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/94/1/mic-94-1-55.html?itemId=/content/journal/micro/10.1099/00221287-94-1-55&mimeType=html&fmt=ahah

References

  1. Bascomb S., Lapage S. P., Willcox W. R., Curtis M. A. 1971; Numerical classification of the tribe Klebsielleae. Journal of General Microbiology 66:279–295
    [Google Scholar]
  2. Bergey’s Manual Of Determinative Bacteriology, 8th. 1974 Buchanan R. E., Gibbons N. E. Edited by Baltimore: The Williams and Wilkins Co.;
  3. Brown C., Seidler R. J. 1973; Potential pathogens in the environment: Klebsiella pneumoniae, a taxonomic and ecological enigma. Applied Microbiology 25:900–904
    [Google Scholar]
  4. Burman L. G., Nordstrom K., Boman H. G. 1968; Resistance of Escherichia coli to penicillins. V. Physiological comparison of two isogenic strains, one with chromosomally and one with episomally mediated ampicillin resistance. Journal of Bacteriology 96:438–446
    [Google Scholar]
  5. Costerton J. W., Ingram J. M., Cheng K. -J. 1974; Structure and function of the cell envelope of Gram-negative bacteria. Bacteriological Reviews 38:87–110
    [Google Scholar]
  6. Cowan S. T., Steel K. J. 1965 Identification of Medical Bacteria. Cambridge: Cambridge University Press;
    [Google Scholar]
  7. Dale J. W., Smith J. T. 1974; R factor-mediated β-lactamases that hydrolyse oxacillin: evidence for two distinct groups. Journal of Bacteriology 119:351–356
    [Google Scholar]
  8. Datta N. 1962; Transmissible drug resistance in an epidemic strain of Salmonella typhimurium. Journal of Hygiene, Cambridge 60:301–310
    [Google Scholar]
  9. Edwards P. R., Ewing W. H. 1971 Identification of Enterobacteriaceae, 3rd. Minneapolis: Burgess;
    [Google Scholar]
  10. El-Sharkawy T. A., Huisingh D. 1971a; Electrophoretic analysis of esterases and other soluble proteins from representatives of phytopathogenic bacterial genera. Journal of General Microbiology 68:149–154
    [Google Scholar]
  11. El-Sharkawy T. A., Huisingh D. 1971b; Differentiation among Xanthomonas species by polyacrylamide gel electrophoresis of soluble proteins. Journal of General Microbiology 68:155–165
    [Google Scholar]
  12. Fleming P. C., Goldner M., Glass D. G. 1963; Observations on the nature, distribution and significance of cephalosporinase. Lancet i:1399–1401
    [Google Scholar]
  13. Fox R. H., McClain D. E. 1975; Enzyme electrophoretograms in the analysis of taxon relatedness of Micrococcus cryophilus, Branhamella catarrhalis and atypical Neisserias. Journal of General Microbiology 86:210–216
    [Google Scholar]
  14. Gardner P., Smith D. H., Beer H., Moellering R. C. 1969; Recovery of resistance (R) factors from a drug-free community. Lancet ii:774–776
    [Google Scholar]
  15. Hamilton-Miller J. M. T. 1968; Wild-type variants of penicillinase from Klebsiella aerogenes. Federation of European Biochemical Societies Letters 1:86–88
    [Google Scholar]
  16. Hennessey T. D. 1967; Inducible β-lactamase in Enterobacter. Journal of General Microbiology 49:277–285
    [Google Scholar]
  17. Hennessey T. D., Richmond M. H. 1968; The purification and some properties of a β-lactamase (cephalosporinase) synthesized by Enterobacter cloacae. Biochemical Journal 109:469–473
    [Google Scholar]
  18. Jack G. W., Richmond M. H. 1970; A comparative study of eight distinct β-lactamases synthesized by Gram-negative bacteria. Journal of General Microbiology 61:43–61
    [Google Scholar]
  19. Knox R., Smith J. T. 1961; Use of cellulose acetate membranes for detecting penicillinase-producing organisms. Nature; London: 191926–927
    [Google Scholar]
  20. Matthew M., Harris A. M., Marshall M. J., Ross G. W. 1975; The use of analytical isoelectric focusing for detection and identification of β-lactamases. Journal of General Microbiology 88:169–178
    [Google Scholar]
  21. Neu H. C., Winshell E. B. 1972; Relation of β-lactamase activity and cellular location to resistance of Enterobacter to penicillins and cephalosporins. Antimicrobial Agents and Chemotherapy 1:107–111
    [Google Scholar]
  22. Newsom S. W. B., Marshall M. J., Harris A. M. 1974; Enterobacteria, β-lactam antibiotics and β-lactamases in clinical practice. Journal of Medical Microbiology 7:473–482
    [Google Scholar]
  23. Novick R. P. 1962; Staphylococcal penicillinase and the new penicillins. Biochemical Journal 83:229–235
    [Google Scholar]
  24. Ørskov I. 1957; Biochemical types in the Klebsiella group. Acta pathologica et microbiologica scandihavica 40:155–162
    [Google Scholar]
  25. Ozer J. H., Lowery D. L., Saz A. K. 1970; Derepression of β-lactamase (penicillinase) in Bacillus cereus by peptidoglycans. Journal of Bacteriology 102:52–63
    [Google Scholar]
  26. Pollock M. R. 1965; Purification and properties of penicillinases from two strains of Bacillus licheni-formis: a chemical, physicochemical and physiological comparison. Biochemical Journal 94:666–675
    [Google Scholar]
  27. Pollock M. R. 1967; Origin and function of penicillinase: a problem in biochemical evolution. British Medical Journal 11:71–77
    [Google Scholar]
  28. Richmond M. H. 1965; Wild-type variants of exopenicillinase from Staphylococcus aureus. Biochemical Journal 94:584–593
    [Google Scholar]
  29. Richmond M. H., Sykes R. B. 1972; The chromosomal integration of a β-lactamase gene derived from the P-type R-factor RPI in Escherichia coli. Genetical Research 20:231–237
    [Google Scholar]
  30. Richmond M. H., Sykes R. B. 1973; The β-lactamases of Gram-negative bacteria and their possible physiological rôle. In Advances in Microbial Physiology 9 pp. 31–88 Rose A. H., Tempest D. W. Edited by New York and London: Academic;
    [Google Scholar]
  31. Ross G. W., Boulton M. G. 1972; Improvement of the specificity of an antiserum toβ-lactamase by absorption with a mutant which does not produce the enzyme. Journal of Bacteriology 112:1435–1437
    [Google Scholar]
  32. Ross G. W., Boulton M. G. 1973; Purification of β-lactamases on QAE-Sephadex. Biochimica et bio-physica acta 309:430–439
    [Google Scholar]
  33. Sabath L. D., Abraham E. P. 1964; Synergistic action of penicillins and cephalosporins against Pseudomonas pyocyanea. Nature; London: 2041066–1069
    [Google Scholar]
  34. Sachithanandam S., Lowery D. C., Saz A. K. 1974; Endogenous, spontaneous formation of beta- lactamase in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 6:763–769
    [Google Scholar]
  35. Salton M. R. J. 1964 The Bacterial Cell Wall. Amsterdam: Elsevier;
    [Google Scholar]
  36. Sargent M. G., Ghosh B. K., Lampen J. O. 1968; Localization of cell-bound penicillinase in Bacillus licheniformis. Journal of Bacteriology 96:1329–1338
    [Google Scholar]
  37. Sawai T., Mitsuhashi S., Yamagishi S. 1968; Drug resistance of enteric bacteria. XIV. Comparison of β-lactamases in Gram-negative rod bacteria resistant to α-aminobenzyl penicillin. Japanese Journal of Microbiology 12:423–434
    [Google Scholar]
  38. Sawai T., Yamagishi S., Mitsuhashi S. 1973; Penicillinases of Klebsiella pneumoniae and their phylogenetic relationship to penicillinases mediated by R factors. Journal of Bacteriology 115:1045–1054
    [Google Scholar]
  39. Segalove M. 1947; The effect of penicillin on growth and toxin production by enterotoxic staphylococci. Journal of Infectious Diseases 81:228–243
    [Google Scholar]
  40. Smith J. T. 1963a; Penicillinase and ampicillin resistance in a strain of Escherichia coli. Journal of General Microbiology 30:299–306
    [Google Scholar]
  41. Smith J. T. 1963b; Sulphydryl groups essential for the penicillinase activity of Aerobacter cloacae. Nature; London: 197900–901
    [Google Scholar]
  42. Smith J. T., Bremner D. A., Datta N. 1974; Ampicillin resistance of Shigella sottnei. Antimicrobial Agents and Chemotherapy 6:418–421
    [Google Scholar]
  43. Thompson J. S., Severson C. D., Stearns N. A., Kasik J. E. 1972; Immunological distinction of mycobacterial beta-lactamases. Infection and Immunity 5:542–546
    [Google Scholar]
  44. Yamagishi S., O’Hara K., Sawai T., Mitsuhashi S. 1969; The purification and properties of penicillin β-lactamases mediated by transmissible R factors in Escherichia coli. Journal of Biochemistry (Tokyo) 66:11–20
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-94-1-55
Loading
/content/journal/micro/10.1099/00221287-94-1-55
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error