1887

Abstract

SUMMARY: wvu strain 3672 accumulates storage polysaccharides when grown in a glucose-supplemented medium containing a growth-limiting concentration of nitrogen. Structural analysis of an isolated and purified sample identified the material as a glycogen-like polysaccharide possessing an average chain length of 11·6 glucosyl units and iodine absorption maximum at 460 nm. Cytochemical staining of thin sections of whole organisms revealed granules ranging in size from 60 to 100 nm in diameter distributed throughout the cytoplasm. Glycogen granules could easily be differentiated from lipid storage vacuoles after treatment of thin sections with a glycogen-specific staining procedure. Negatively stained preparations of glycogen granules isolated with cold water revealed α-particles composed of indistinct sub-units.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-83-2-349
1974-08-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/83/2/mic-83-2-349.html?itemId=/content/journal/micro/10.1099/00221287-83-2-349&mimeType=html&fmt=ahah

References

  1. Antoine A. D., Tepper B. S. 1969; Characterization of glycogens from mycobacteria. Archives of Biochemistry and Biophysics 134:207–213
    [Google Scholar]
  2. Berman K. S., Gibbons R. J., Nalbandian J. 1967; Localization of intracellular polysaccharide granules in Streptococcus mitis . Archives of Oral Biology 12:1133–1138
    [Google Scholar]
  3. Block R. J., Durrum E. L., Zweig G. 1958 Manual of Paper Chromatography and Paper Electrophoresis, 2nd edn.. p 182 New York: Academic Press;
    [Google Scholar]
  4. Boylen C. W., Pate J. L. 1973; Fine structure of Arthrobacter crystallopoietes during long-term starvation of rod and spherical stage cells. Canadian Journal of Microbiology 19:1–5
    [Google Scholar]
  5. Bueding E., Orrell S. A. 1964; A mild procedure for the isolation of polydisperse glycogen from animal tissues. Journal of Biological Chemistry 239:4018–4020
    [Google Scholar]
  6. Cedergren B., Holme T. 1959; On the glycogen of E. co/i B. Electron microscopy of ultrathin sections of cells. Journal of Ultrastructural Research 3:70–73
    [Google Scholar]
  7. Cowgill R. W., Pardee A. B. 1958 Experiments in Biochemical Research Techniques p 157 New York: John Wiley;
    [Google Scholar]
  8. Fales F. W. 1959; A reproducible periodate oxidation method for the determination of glycogen end- groups. Analytical Chemistry 31:1898–1900
    [Google Scholar]
  9. Ghosh H. P., Preiss J. 1965; The isolation and characterization of glycogen from Arthrobacter sp. NRRL B 1973. Biochimica et biophysica acta 104:274–277
    [Google Scholar]
  10. Gordon C. N. 1972; The use of octadecanol monolayers as wetting agents in the negative staining technique. Journal of Ultrastructural Research 39:173–185
    [Google Scholar]
  11. Holme T., Cedergren B. 1961; Demonstration of intracellular polysaccharide in E. colt by electron microscopy and by cytochemical methods. Acta pathologica et microbiologica scandinavica 51:170–186
    [Google Scholar]
  12. Kellenberger E., Ryter A. 1964; In bacteriology. In Modern Developments in Electron Microscopy p. 335 Siegel B. M. Edited by New York: Academic Press;
    [Google Scholar]
  13. Kellenberger E., Ryter A., Séchaud J. 1958; Electron microscopic study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. Journal of Biophysical and Biochemical Cytology 4:671–678
    [Google Scholar]
  14. Krisman C. R. 1962; A method for the colorimetric estimation of glycogen with iodine. Analytical Biochemistry 4:17–23
    [Google Scholar]
  15. Mcfarland C. R. 1967 Neutral lipids as endogenous carbon and energy reserves in Nocardia asteroides Ph.D. dissertation West Virginia University, Morgantown, West Virginia, U.S.A.:
    [Google Scholar]
  16. Passonneau J. V., Gatfield P. D., schulz D. W., Lowry O. H. 1967; An enzymic method for measurement of glycogen. Analytical Biochemistry 19:315–326
    [Google Scholar]
  17. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron opaque stain in electron microscopy. Journal of Cellular Biology 17:208–212
    [Google Scholar]
  18. Seifter S., Dayton S., Novic B., Muntwyler E. 1950; The estimation of glycogen with the anthrone reagent. Archives of Biochemistry 25:191–200
    [Google Scholar]
  19. Sigal N., Cattaneo J., Segel I. H. 1964; Glycogen accumulation by wild-type and uridine diphosphate glucose pyrophosphorylase-negative strains of Escherichia coli . Archives of Biochemistry and Biophysics 108:440–451
    [Google Scholar]
  20. Watson S. W., Graham L. B., Remsen C. C., Valois F. W. 1971; A lobar, ammonia-oxidizing bacterium, Nitrosolobus multiformis nov. gen. nov. sp. Archiv für Mikrobiologie 76:183–203
    [Google Scholar]
  21. Watson S. W., Waterbury J. B. 1971; Characteristics of two marine nitrate oxidizing bacteria, Nitro- spina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp. Archiv für Mikrobiologie 77:203–230
    [Google Scholar]
  22. Voelz H., Voelz U., Ortigoza R. O. 1966; The ‘polyphosphate overplus ’ phenomenon in Myxococcus xanthus and its influence on the architecture of the cell. Archiv für Mikrobiologie 53:371–388
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-83-2-349
Loading
/content/journal/micro/10.1099/00221287-83-2-349
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error