1887

Abstract

SUMMARY

In a sudden increase in ammonia supply or a decrease in glucose supply can result in a rapid and extensive reduction in glutamine synthetase activity, a fall that is much faster than can be accounted for by the immediate repression of enzyme synthesis followed by the dilution of existing enzyme by the other cell proteins produced during continued growth. This decrease in enzyme activity is not caused by the build-up within the cell of an inhibitor of the enzyme, by the rapid turnover of the enzyme, or by the conversion of the enzyme from a more active to a less active form, but by the specific inactivation of the enzyme. Inactivation appears to be largely irreversible, and studies using inhibitors of protein synthesis indicate that the reappearance of the enzyme after removal of ammonia is dependent on protein synthesis.

Glutamine synthetase activity can be estimated by using either the transferase assay or the synthetase assay: the ratio of these activities is virtually constant in preparations from yeast growing under a wide range of conditions and during inactivation and reappearance of the enzyme.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-80-1-173
1974-01-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/80/1/mic-80-1-173.html?itemId=/content/journal/micro/10.1099/00221287-80-1-173&mimeType=html&fmt=ahah

References

  1. Baker R. S., Johnson J. E., Fox S. W. 1958; Incorporation of p-fluorophenylalanine into proteins of Lactobacillus arabinosus. Biochimica et biophysica acta 28:318–327
    [Google Scholar]
  2. Chapman C., Bartley W. 1968; The kinetics of enzyme changes in yeast under conditions that cause the loss of mitochondria. Biochemical Journal 107:455–465
    [Google Scholar]
  3. Ferguson A. R., Sims A. P. 1971; Inactivation in vivo of glutamine synthetase and NAD-specific glutamate dehydrogenase: its role in the regulation of glutamine synthesis in yeasts. Journal of General Microbiology 69:423–427
    [Google Scholar]
  4. Ferguson A. R., Sims A. P. 1974; The regulation of glutamine metabolism in Candida utilis: the role of glutamine in the control of glutamine synthetase. Journal of General Microbiology 80:159–171
    [Google Scholar]
  5. Ferguson J. J.Jun Boll M., Holzer H. 1967; Yeast malate dehydrogenase: enzyme inactivation in catabolite repression. European Journal of Biochemistry 1:21–25
    [Google Scholar]
  6. Fowden L., Lewis D., Tristram H. 1967; Toxic amino acids: their action as antimetabolites. Advances in Enzymology 29:89–163
    [Google Scholar]
  7. Gancedo C. 1971; Inactivation of fructose-1,6-diphosphatase by glucose in yeast. Journal of Bacteriology 107:401–405
    [Google Scholar]
  8. Gancedo C., Holzer H. 1968; Enzymatic inactivation of glutamine synthetase in Enterobacteriaceae. European Journal of Biochemistry 4:190–192
    [Google Scholar]
  9. Holzer H., Duntze W. 1971; Metabolic regulation by chemical modification of enzymes. Annual Review of Biochemistry 40:345–374
    [Google Scholar]
  10. Hurlbert R. E., Lascelles J. 1963; Ribulosediphosphate carboxylase in Thiorhodaceae. Journal of General Microbiology 33:445–458
    [Google Scholar]
  11. John P. C. L., Thurston C. F., Syrett P. J. 1970; Disappearance of isocitratelyase enzyme from cells of Chlorella pyrenoidosa. Biochemical Journal 119:913–919
    [Google Scholar]
  12. Kuehn G. D., McFadden B. A. 1968; Factors affecting the synthesis and degradation of ribulose-1,5-diphosphate carboxylase in Hydrogenomonasfacilis and Hydrogenomonas eutropha. Journal of Bacteriology 95:937–946
    [Google Scholar]
  13. Lascelles J. 1968; The bacterial photosynthetic apparatus. Advances in Microbial Physiology 2:1–42
    [Google Scholar]
  14. Lewis C. M., Fincham J. R. S. 1970; Regulation of nitrate reductase in the basidiomycete Ustilagomaydis. Journal of Bacteriology 103:55–61
    [Google Scholar]
  15. Liedtke M. P., Ohmann E. 1969; Eigenschaften und Regulation einer Phosphatase in Euglena gracilis, Synthese und Inaktivierung. European Journal of Biochemistry 10:539–548
    [Google Scholar]
  16. Lin E. C. C., Levin A. P., Magasanik B. 1960; The effect of aerobic metabolism on the inducible glycerol dehydrogenase of Aerobacter aerogenes. Journal of Biological Chemistry 235:1824–1829
    [Google Scholar]
  17. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  18. Mandelstam J. 1964; Induced biosynthesis of lysine decarboxylase in Bacterium cadaveris. Journal of General Microbiology 11:426–437
    [Google Scholar]
  19. Mecke D., Holzer H. 1966; Repression und Inaktivierung von Glutaminsynthetase in Escherichia coli durch NH4+. Biochimica et biophysica acta 122:341–351
    [Google Scholar]
  20. Mecke D., Wulff K., Holzer H. 1966; Metabolit-induzierte Inaktivierung von GlutaminsynthetaseausEscherichia coli im zellfreien System. Biochimica et biophysica acta 128:559–567
    [Google Scholar]
  21. Nijkamp H. J. J. 1969; Regulatory role of adenine nucleotides in the biosynthesis of guanosine 5′-mono-phosphate. Journal of Bacteriology 100:585–593
    [Google Scholar]
  22. Pollock M. R. 1958; Enzymic ‘de-adaptation’: the stability of an acquired character on withdrawal of the external inducing stimulus. Proceedings of the Royal Society of London B148:340–352
    [Google Scholar]
  23. Price C. A. 1962; Repression of acid phosphatase synthesis in Euglena gracilis. Science; New York: 13546
    [Google Scholar]
  24. van Rijn J., van Wijk R. 1972; Differential sensitivities of the two malate dehydrogenases and the maltose permease to the effect of glucose in Saccharomyces carlsbergensis. Journal of Bacteriology no:477–484
    [Google Scholar]
  25. Robertson J. J., Halvorson H. O. 1957; The components of maltozymase in yeast and their behaviour during de-adaptation. Journal of Bacteriology 73:186–198
    [Google Scholar]
  26. Schimke R. T., Doyle D. 1970; Control of enzyme levels in animal tissues. Annual Review of Biochemistry 39:929–976
    [Google Scholar]
  27. Shapiro B. M., Stadtman E. R. 1970; The regulation of glutamine synthesis in microorganisms. Annual Review of Microbiology 24:501–524
    [Google Scholar]
  28. Sims A. P., Ferguson A. R. 1972; The role of enzyme inactivation in the regulation of glutamine synthesis in yeast: in vivo studies using 15N. In 6. Wissenschaftliche Konferenz der Gesellschaft Deutscher Naturforscher und Ärtze. Second International Symposium on Metabolic Interconversion of Enzymes, Rottach-Egern, 1971 pp. 261–276 Wieland O., Helmreich E., Holzer H. Edited by Berlin, Heidelberg, New York: Springer Verlag;
    [Google Scholar]
  29. Sims A. P., Ferguson A. R. 1974; The regulation of glutamine metabolism in Candida utilis: Studies with 15NH3 to measure in vivo rates of glutamine synthesis. Journal of General Microbiology 80:143–1 58
    [Google Scholar]
  30. Sims A. P., Toone J., Box V. 1974; The regulation of glutamine synthesis in the food yeast Candida utilis: the purification and subunit structure of glutamine synthetase and aspects of enzyme deactivation. Journal of General Microbiology 80: in the press
    [Google Scholar]
  31. Spiegelman S., Reiner J. M. 1947; The formation and stabilization of an adaptive enzyme in the absence of its substrate. Journal of General Physiology 31:175–193
    [Google Scholar]
  32. Stadtman E. R., Ginsburg A., Ciardi J. E., Yeh J., Hennig S. B., Shapiro B. M. 1970; Multiple molecular forms of glutamine synthetase produced by enzyme catalyzed adenylation and deadenylation reactions. Advances in Enzyme Regulation 8:99–118
    [Google Scholar]
  33. Subramanian K. N., Sorger G. J. 1972; Regulation of nitrate reductase in Neurospora crassa: stability in vivo. Journal of Bacteriology no:538–546
    [Google Scholar]
  34. Thurston C. F., John P. C. L., Syrett P. J. 1973; The effect of metabolic inhibitors on the loss of isocitratelyase activity from Chlorella. Archiv für Mikrobiologie 88:135–145
    [Google Scholar]
  35. Weimberg R., Orton W. L. 1965; Synthesis and breakdown of the polyphosphate fraction and acid phosphomonoesterase of Saccharomyces mellis and their locations in the cell. Journal of Bacteriology 89:740–747
    [Google Scholar]
  36. Wiame J. M. 1971; The regulation of arginine metabolism in Saccharomyces cerevisiae: exclusion mechanisms. Current Topics in Cellular Regulation 4:1–38
    [Google Scholar]
  37. Williams L. S., Neidhardt F. C. 1969; Synthesis and inactivation of aminoacyl-transfer RNA synthetases during growth of Escherichia coli. Journal of Molecular Biology 43:529–550
    [Google Scholar]
  38. Witt I., Kronau R., Holzer H. 1966; Repression von Alkoholdehydrogenase, Malatdehydrogenase, Isocitratlyase and Malatsynthase in Hefedurch Glucose. Biochimica et biophysica acta 118:522–537
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-80-1-173
Loading
/content/journal/micro/10.1099/00221287-80-1-173
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error