1887

Abstract

SUMMARY: A Penicillium species isolated from soil, decomposed up to 0·1% (w/v) thiourea only with an energy source such as glucose. The fungus released part of the sulphur and nitrogen as sulphate and ammonia which served as S and N sources. The medium became strongly acid due to organic acids originating from glucose; at the acid reactions the amount of sulphate formed was small, but near neutrality most of the sulphur was oxidized to sulphate. Most decomposition of the thiourea and production of sulphate and acid occurred during the lag phase. Ammonium nitrogen promoted growth but reduced decomposition of thiourea. Nitrate was assimilated in the absence of thiourea but not in its presence. Citrate did not support growth but promoted assimilation of nitrogen. Glucose augmented from 0·2 to 2·0% led to increased growth, decomposition of thiourea and production of sulphate and acid. Aeration also promoted growth and sulphate production. Among the incompletely oxidized decomposition products were sulphate esters and ureides.

Sulphate production indicated that thiourea and four substituted thioureas underwent slow decomposition in soil and sewage sludge. In soil, all of the sulphur of the compounds was oxidized to sulphate in 20 weeks; decomposition was much slower in sewage sludge. Most cultures isolated from treated soil and sewage sludge failed to attack thiourea in culture media on serial transfer.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-64-2-139
1970-12-01
2021-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/64/2/mic-64-2-139.html?itemId=/content/journal/micro/10.1099/00221287-64-2-139&mimeType=html&fmt=ahah

References

  1. Anonymous 1960 Official Methods of Analysis 9th edn 401–403 Washington, D. C.: Association of Official Agricultural Chemists.;
    [Google Scholar]
  2. Bartlett F. D., Neller J. R. 1960; Turbidimetric determination of sulphate in soil extracts.. Soil Science 90:201–204
    [Google Scholar]
  3. Boeyens J. C. A., Herbstein F. H. 1966; Ionic complexes of thiourea.. Nature, London 211:588–590
    [Google Scholar]
  4. Bojanowski R., Gaudy E., Valentine R. C., Wolfe R. S. 1964; Oxamic transcarbamylase of Streptococcus allantoicus.. Journal of Bacteriology 87:75–80
    [Google Scholar]
  5. Bouchilloux S. 1961; Action de la polyphénoloxydase en présence dethiourée; inhibition et formation de thioéthers.. Comptes rendu des séances de la Société de biologie, Paris 155:1325–1330
    [Google Scholar]
  6. Chesnin L., Yien C. H. 1950; Turbidimetric determination of available sulphates.. Proceedings. Soil Science Society of America 15:149–151
    [Google Scholar]
  7. Colowick S. P., Kaplan N. O. 1955–7 Methods in Enzymology vol. 2 pp. 334–337, 752; vol. 3, pp. 981–984, 987–988, 990–1001. New York: Academic Press.;
    [Google Scholar]
  8. Conway E. J. 1950 Microdiffusion Analysis and Volumetric Error London: Crosby Lockwood & Son Ltd.;
    [Google Scholar]
  9. Cook A. R., Boulter D. 1964; Utilization of urea by Candida flareri.. Phytochemistry 3:313–319
    [Google Scholar]
  10. Czaky T. Z. 1948; On the estimation of bound hydroxylamine in biological materials.. Acta chemica scandinavica 2:450–454
    [Google Scholar]
  11. Danielson I. S. 1933; Amino acid nitrogen in blood and its determination.. Journal of Biological Chemistry 101:505–522
    [Google Scholar]
  12. Downing A. L., Tomlinson T. G., Truesdale G. A. 1964; Effect of inhibitors on nitrification in the activated sludge process.. Journal and Proceedings of the Institute for Sewage Purification537–554
    [Google Scholar]
  13. Frederick L. R., Starkey R. L., Segal W. 1957; Decomposability of some organic sulphur compounds in soil.. Proceedings. Soil Science Society of America 21:287–292
    [Google Scholar]
  14. Fuller W. H., Caster A. B., McGeorge W. T. 1950; Behaviour of nitrogenous fertilizers in alkaline calcareous soils. I. Nitrifying characteristics of some organic compounds under controlled conditions.. Technical Bulletin. Arizona Agricultural Experiment Station 120:451–467
    [Google Scholar]
  15. Hotchkiss R. D. 1956; The assimilation of amino acids by respiring washed staphylococci.. Archives of Biochemistry and Biophysics 65:302–318
    [Google Scholar]
  16. Jaques R. P., Robinson J. B., Chase F. E. 1959; Effects of thiourea, ethyl urethane and some dithiocarbamate fungicides on nitrification in Fox sandy loam.. Canadian Journal of Soil Science 39:235–243
    [Google Scholar]
  17. Jensen H. L. 1957; Biological transformation of thiourea.. Archiv für Mikrobiologie 28:145–152
    [Google Scholar]
  18. Jensen H. L., Bendixen E. 1958; Om biologisk virkning og sonderlinging af thiourinstof i jord og staldgodning.. Tidsskrift for Planteavl 62:499–521
    [Google Scholar]
  19. Jensen H. L., Sorenson H. 1952; The influence of some organic sulphur compounds and enzyme inhibitors on Nitrosomonas europaea.. Acta agriculturae scandinavica 2:295–304
    [Google Scholar]
  20. Klein D., Pramer D. 1962; Some products of the bacterial dissimilation of streptomycin.. Journal of Bacteriology 83:309–313
    [Google Scholar]
  21. Koritz S. B., Cohen P. P. 1954; Colorimetric determination of carbamylamino acids and related compounds.. Journal of Biological Chemistry 209:145–150
    [Google Scholar]
  22. Landon R. H. 1934; The effect of certain chemicals on the catalase activity in plants.. American Journal of Botany 21:583–591
    [Google Scholar]
  23. Lees H. 1952; The biochemistry of the nitrifying organisms. I. The ammonia-oxidizing system of Nitrosomonas.. Biochemical Journal 52:134–139
    [Google Scholar]
  24. Malaney G. W., Lutin P. A., Cibulka J. J., Hickerson L. H. 1967; Resistance of carcinogenic organic compounds to oxidation by activated sludge.. Journal of the Water Pollution Control Federation 39:2020–2029
    [Google Scholar]
  25. Mayer A. M. 1958; Ascorbic acid oxidase in germinating lettuce seeds and its inhibition.. Physiologia plantarum 11:75–83
    [Google Scholar]
  26. Nicholas E., Lebduska J. 1928; Étude comparative de l’action de Turée et de la sulfo-urée sur le développement et la vitalité des bactéries.. Comptes rendus hebdomadaires des seances de l’Acad-emie des sciences, Paris 186:1767–1769
    [Google Scholar]
  27. Nicholas E., Nicholas G. 1925; Observations sur l’influence de l’urée de la sulfo-urée et de l’allylsulfo-urée sur les végétaux supérieurs.. Comptes rendus hebdomadaires des seances de l’Academie des sciences, Paris 180:1286–1289
    [Google Scholar]
  28. Quastel J. H., Scholefield P. G. 1951; Biochemistry of nitrification in soil.. Bacteriological Reviews 15:1–53
    [Google Scholar]
  29. Raper K. B., Thom C. 1949 A Manual of the Penicillia Baltimore, Maryland: Williams and Wilkins Co.;
    [Google Scholar]
  30. Rippel A. 1925; Notiz über die Verarbeitung von Thioharnstoff durch Aspergillus niger v. Tgh.. Biochemische Zeitschrift 165:473–474
    [Google Scholar]
  31. Ruiz-Herrera J., Starkey R. L. 1969; Dissimilation of methionine by fungi.. Journal of Bacteriology 99:544–551
    [Google Scholar]
  32. Segal W, Starkey R. L. 1969; Microbial decomposition of methionine and identity of the resulting sulphur products.. Journal of Bacteriology 98:908–913
    [Google Scholar]
  33. Starkey R. L. 1934; The production of polythionates from thiosulfate by micro-organisms.. Journal of Bacteriology 28:387–400
    [Google Scholar]
  34. Stotzky G., Norman A. G. 1961; Factors limiting microbial activities in soil. II. The effect of sulphur.. Archiv fur Mikrobiologie 40:370–382
    [Google Scholar]
  35. Tomlinson T. G., Boon A. G., Trotman C. N. A. 1966; Inhibition of nitrification in the activated sludge process of sewage disposal.. Journal of Applied Bacteriology 29:266–291
    [Google Scholar]
  36. Umbreit W. W., Burris R. H., Stauffer J. F. 1957 Manometric Techniques 3rd edn 239 Minneapolis, Minnesota: Burgess Publ. Co.: Burgess Publ. Co.;
    [Google Scholar]
  37. Weuffen W., ckeritz D., Fabrini R. 1967; Zusammenhänge zwischen chemi-scher Konstitution und keimwidriger Wirkung.. Pharmazie 22:506–517
    [Google Scholar]
  38. Yamafuji K., Osajima Y. 1961; Ammonia dehydrogenase, hydroxylamine dehydrogenase, hypo-nitrite dehydrogenase, and nitrite dehydrogenase.. Nature, London 190:534–353
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-64-2-139
Loading
/content/journal/micro/10.1099/00221287-64-2-139
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error