1887

Abstract

SUMMARY

Sixty different isolates of methionineless auxotrophs of were arranged in nine biochemical groups according to their growth responses to methionine or its precursors. These requirements suggested that possesses a route for methionine biosynthesis which is similar to the pathway operating in and In contrast to findings with the latter organisms syntrophism was not observed between these mutants of even with sonically disrupted potential feeder strains. Two methionineless auxotrophs of fed auxotrophs of which had metabolic blocks earlier in this pathway. These results, which suggested an inability of methionineless auxotrophs of to accumulate precursors of metabolic blocks, were confirmed by a quantitative comparison of methionine precursors in wild-type and mutant strains of and . The presence of -methylcysteine (SMC) was demonstrated in wild-type and methionineless auxotrophs of and . The growth responses of methionineless auxotrophs of to SMC supported a hypothesis for the participation of this amino acid in the synthesis of methionine via an alternative route.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-46-1-47
1967-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/46/1/mic-46-1-47.html?itemId=/content/journal/micro/10.1099/00221287-46-1-47&mimeType=html&fmt=ahah

References

  1. Bolton E. T., Cowie D. B., Sands M. K. 1952; Sulfur metabolism in Escherichia coli III. The metabolic fate of sulfate sulfur. J. Bact 63:309
    [Google Scholar]
  2. Cauthen S. E., Foster M. A., Woods D. D. 1966; Methionine synthesis by extracts of Salmonella typhimurium . Biochem. J 98:630
    [Google Scholar]
  3. Coetzee J. N. 1965; Arginineless auxotrophs of Proteus. Med. Proc 11250
    [Google Scholar]
  4. Coetzee J. N., Sacks T. G. 1960; Transduction of streptomycin resistance in Proteus mirabilis . J. gen. Microbiol 23:445
    [Google Scholar]
  5. Clowes R. C. 1958; Nutritional studies of cysteineless mutants of Salmonella typhimurium . J. gen. Microbiol 18:140
    [Google Scholar]
  6. Cowie D. B., Bolton E. T., Sands M. K. 1950; Sulfur metabolism in Escherichia coli. I. Sulfate metabolism of normal and mutant cells. J. Bact 60:233
    [Google Scholar]
  7. Davis B. D. 1948; Isolation of biochemically deficient mutants of bacteria by penicillin. J. Am. chem. Soc 70:4267
    [Google Scholar]
  8. Davis B. D., Mingioli E. S. 1950; Mutants of Escherichia coli requiring methionine or vitamin B12. J. Bact 60:17
    [Google Scholar]
  9. Delavier-Klutchko C., Flavin M. 1965; Enzymatic synthesis and cleavage of cystathionine in fungi and bacteria. J. biol. Chem 240:2537
    [Google Scholar]
  10. Demerec M., Bertani G., Flint J. 1951; A survey of chemicals for mutagenic action on Escherichia coli . Am. Nat 85:119
    [Google Scholar]
  11. Demerec M., Hartman P. E., Moser H., Kanazir D., Demerec Z. E., Fitzgerald P. L., Glover S. W., Lahr E. L., Westover W. E., Yura T. 1955; Bacterial genetics. I. Yb. Carnegie Instn Wash 54:219
    [Google Scholar]
  12. Gorini L., Kaufman H. 1960; Selecting bacterial mutants by the penicillin method. Science, N. Y. 131:604
    [Google Scholar]
  13. Gornall A. G., Bardawill C. J., David M. M. 1949; Determination of serum proteins by means of the biuret reaction. J. biol. Chem 177:751
    [Google Scholar]
  14. Gross D., Tarver H. 1955; The incorporation of ethionine into the proteins of Tetrahymena. J. biol. Chem 217:169
    [Google Scholar]
  15. Horowitz N. H. 1955Symposium on Amino Acid Metabolism. Discussion631 Baltimore: The Johns Hopkins Press;
    [Google Scholar]
  16. Lampen J. O., Roepke R. R., Jones M. J. 1947; Studies on the sulfur metabolism of Escherichia coli. III. Mutant strains of Escherichia coli unable to utilize sulfate for their complete sulfur requirements. Archs Biochem 13:55
    [Google Scholar]
  17. Lederberg J. 1946; Studies in bacterial genetics. J. Bact 52:503
    [Google Scholar]
  18. Lederberg J., Lederberg E. M. 1952; Replica plating and indirect selection of bacterial mutants. J. Bact 63:399
    [Google Scholar]
  19. Lederberg J., Zinder N. 1948; Concentration of biochemical mutants of bacteria with penicillin. J. Am. chem. Soc 70:4267
    [Google Scholar]
  20. Leggett Bailey J. 1962 Techniques in Protein Chemistry London: Elsevier Publishing Company;
    [Google Scholar]
  21. Maw G. A. 1961; Ability of S-methyl-l-cysteine to annul the inhibition of yeast growth by l-ethionine and by S-ethyl-l-cysteine. J. gen. Microbiol 25:441
    [Google Scholar]
  22. Meister A. 1965 Biochemistry of the Amino Acids, 2. London: Academic Press;
    [Google Scholar]
  23. Moore S. 1963; On the determination of cysteine as cysteic acid. J. biol. Chem 238235
    [Google Scholar]
  24. Morris C. J., Thompson J. F. 1955; Isolation of l(+)-S-methylcysteine sulphoxide from turnip roots. Chemy Ind951
    [Google Scholar]
  25. Parks L. W. 1958; S-Adenosylethionine and ethionine inhibition. J. biol. Chem 232:169
    [Google Scholar]
  26. Postgate J. R. 1963; The examination of sulphur auxotrophs: a warning. J. gen. Microbiol 30:481
    [Google Scholar]
  27. Ragland J. B., Liverman J. L. 1956; S-methyl-l-cysteine as a naturally occurring metabolite, in Neurospora crassa . Archs Biochem. Biophys 65:574
    [Google Scholar]
  28. Randerath K. 1964 Thin Layer Chromatography Libman D. D. 93 London: Academic Press Inc;
    [Google Scholar]
  29. Roberts R. B., Abelson P. H., Cowie S. B., Bottom E. T., Britten R. J. 1955; Studies of biosynthesis in Escherichia coli Chap. 18. Sulfur metabolism. Publs Carnegie Instn 607:318
    [Google Scholar]
  30. Rowbury R. J. 1964; The accumulation of O-succinylhomoserine by Escherichia coli and Salmonella typhimurium . J. gen. Microbiol 37:171
    [Google Scholar]
  31. Sanderson K. E., Demerec M. 1965; The linkage map of Salmonella typhimurium . Genetics 51:897
    [Google Scholar]
  32. Smith D. A. 1961; Some aspects of the genetics of methionineless mutants of Salmonella typhimurium . J. gen. Microbiol 24:335
    [Google Scholar]
  33. Synge R. L. M., Wood J. C. 1956; (+)S-methyl-l-cysteine sulphoxide in cabbage. Biochem. J 64:252
    [Google Scholar]
  34. Thompson J. F., Morris C. J., Zacharius R. M. 1956; Isolation of (–)S-methyl-l-cysteine from beans (Phaseolus vulgaris). Nature, Lond 178:593
    [Google Scholar]
  35. Wiebers J. L., Garner H. R. 1963; Isolation of homoserine and serine sulfhydrase from Neurospora crassa . Abstr. 145th Meeting Am. chem. Soc22C
    [Google Scholar]
  36. Wiebers J. L., Garner H. R. 1964; Use of S-methylcysteine and cystathionine by methionineless Neurospora mutants. J. Bact 88:1798
    [Google Scholar]
  37. Wolff E. C., Black S., Downey P. F. 1956; Enzymatic synthesis of S-methylcysteme. J. Am. chem. Soc 78:5958
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-46-1-47
Loading
/content/journal/micro/10.1099/00221287-46-1-47
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error