1887

Abstract

SUMMARY: Resting organisms of serotype 3 are able to synthesize soluble and ribosomal ribonucleic acid (RNA) in the presence of chloram-phenicol. The antibiotic stimulates the synthesis of soluble RNA but has no apparent effect on ribosomal RNA production. In contrast, chlortetracycline, which also suppresses formation of protein, stimulates soluble RNA synthesis and inhibits ribosomal RNA synthesis. The soluble RNA of the chloramphenicol-treated organisms possesses amino acid accepting activity comparable to that of the soluble RNA of untreated organisms. The findings indicate that chloramphenicol does not promote the synthesis of biologically inactive soluble RNA. The stimulation of soluble RNA synthesis appears to be the result, rather than the cause, of the inhibition of protein production by the antibiotic.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-32-2-299
1963-08-01
2024-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/32/2/mic-32-2-299.html?itemId=/content/journal/micro/10.1099/00221287-32-2-299&mimeType=html&fmt=ahah

References

  1. Aronson A. I., Spiegelman S. 1961; On the nature of the ribonucleic acid synthesized in the presence of chloramphenicol. Biochim. biophys. Acta 53:84
    [Google Scholar]
  2. Berg P., Ofengand E. J. 1958; An enzymatic mechanism for linking amino acids to RNA. Proc. nat. Acad. Sci., Wash 44:78
    [Google Scholar]
  3. Brown G. L. 1960; DNA and specific protein synthesis. In Microbial Genetics. Symp. Soc. gen. Microbiol 10:208
    [Google Scholar]
  4. Chantrenne H. 1961 The Biosynthesis of Proteins New York: Pergamon Press;
    [Google Scholar]
  5. Dagley S., Sykes J. 1959; Effect of drugs upon components of bacterial cytoplasm. Nature, Lond 183:1608
    [Google Scholar]
  6. Eaton N. R., Caffrey R. 1961; Effect of dihydrostreptomycin on Escherichia coli. J. Bad 81:918
    [Google Scholar]
  7. Fraenkel D. G., Neidhardt F. C. 1961; Use of chloramphenicol to study control of RNA synthesis in bacteria. Biochim. biophys. Acta 53:96
    [Google Scholar]
  8. Gale E. F., Folkes J. P. 1953; The assimilation of amino-acids by bacteria. 15. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem. J 53:493
    [Google Scholar]
  9. Gale E. F. 1958; Specific inhibitors of protein synthesis. In The Strategy of Chemotherapy: Symp. Soc. gen. Microbiol 8:212
    [Google Scholar]
  10. Horiuchi T., Horiuchi S., Mizuno D. 1959; Non-participation in protein synthesis of the RNA synthesized in the presence of chloramphenicol in Escherichia coli. Jap. J. med. Sci. Biol 12:99
    [Google Scholar]
  11. Kirby K. S. 1956; A new method for the isolation of ribonucleic acids from mammalian tissues. Biochem. J 64:405
    [Google Scholar]
  12. Lacks S., Gros F. 1959; A metabolic study of the RNA-amino acid complexes in Escherichia coli. J. molec. Biol 1:301
    [Google Scholar]
  13. Neidhardt F. C., Gros F. 1957; Metabolic instability of the ribonucleic acid synthesized by Escherichia coli in the presence of Chloromycetin. Biochim. biophys. Acta 25:513
    [Google Scholar]
  14. Nomura M., Watson J. D. 1959; Ribonucleoprotein particles within chloromycetin-inhibited Escherichia coli. J. molec. Biol 1:204
    [Google Scholar]
  15. Ofengand E. J., Dieckmann M., Berg P. 1961; The enzymic synthesis of amino acyl derivatives of ribonucleic acid. III. Isolation of amino acid-acceptor ribonucleic acids from Escherichia coli. J. biol. Chem 236:1741
    [Google Scholar]
  16. Pan S. F., Yee R. B., Gezon H. M. 1957; Studies on the metabolism of Shigella. I. The occurrence of a tricarboxylic acid cycle in Shigella flexneri. J. Bad 73:402
    [Google Scholar]
  17. Pan S. F., Yee R. B., Gezon H. M. 1962; Studies on the metabolism of Shigella. IV. Nutritional requirements of Shigella flexneri serotype 3. J. Bact 83:61
    [Google Scholar]
  18. Pardee A. B., Prestidge L. S. 1956; The dependence of nucleic acid syntheses on the presence of amino acids in Escherichia coli. J. Bact 71:677
    [Google Scholar]
  19. Ramsey H. H. 1958; Protein synthesis as a basis for chloramphenicol-resistance in Staphylococcus aureus. Nature, Bond 182:602
    [Google Scholar]
  20. Schneider W. C. 1957; Determination of nucleic acids in tissues by pentose analysis. Meth. Enzymol 3:680
    [Google Scholar]
  21. Tissieres A., Watson J. D., Schlessinger D., Hollingworth B. R. 1959; Ribonucleoprotein particles from Escherichia coli. J. molec. Biol 1:221
    [Google Scholar]
  22. Tissieres A. 1959; Some properties of soluble ribonucleic acid from Escherichia coli. J. molec. Biol 1:365
    [Google Scholar]
  23. Wisseman C. L., , Jr., Smadel J. E., Hahn F. E., Hopps H. E. 1954; Mode of action of chloramphenicol. I. Action of chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli. J. Bact 67:662
    [Google Scholar]
  24. Yee R. B., Pan S. F., Gezon H. M. 1962; Effect of chloramphenicol on protein and nucleic acid synthesis by Shigella flexneri. J. gen. Microbiol 27:521
    [Google Scholar]
  25. Yee R. B., Gezon H. M., McElligott J. 1962; Ribonucleic acid synthesis in chloramphenicol-treated Shigella. Nature, Lond 196:66
    [Google Scholar]
/content/journal/micro/10.1099/00221287-32-2-299
Loading
/content/journal/micro/10.1099/00221287-32-2-299
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error