1887

Abstract

The gene encoding isocitrate lyase (ICL; EC 4.1.3.1) of a psychrophilic bacterium, , was cloned and sequenced. The ORF of the gene () was 1584 bp long, and the predicted gene product consisted of 528 aa (molecular mass 58150 Da) and showed low homology with the corresponding enzymes from other organisms. The analyses of amino acid content and primary structure of the ICL suggested that it possessed many features of a cold-adapted enzyme. Primer extension and Northern blot analyses revealed that two species of the mRNAs with differential lengths of 5′-untranslated regions (TS1 and TS2) were present, of which the 5′ end (TS1 and TS2 sites) were G and A, located at 130 and 39 bases upstream of the translation start codon, respectively. The levels of TS1 and TS2 mRNAs were increased by both acetate and low temperature. The induction of expression by low temperature took place in the cells grown on succinate as the carbon source but not acetate. Furthermore, a similar manner of inductions was also found in the levels of the translation and the enzyme activity in cell-free extract. These results suggest that the gene, encoding thermolabile isocitrate lyase, of is important for acetate utilization and cold adaptation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-8-2579
2002-08-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/8/1482579a.html?itemId=/content/journal/micro/10.1099/00221287-148-8-2579&mimeType=html&fmt=ahah

References

  1. Britton, K. L., Langridge, S. J., Baker, P. J., Weeradechapon, K., Sedelnikova, S. E., Lucas, J. R., Rice, D. W. & Turner, G. ( 2000; ). The crystal structure and active site location of isocitrate lyase from the fungus Aspergillus nidulans. Structure 8, 349-362.[CrossRef]
    [Google Scholar]
  2. Britton, K. L., Abeysinghe, I. S., Baker, P. J. & 8 other authors ( 2001; ). The structure and domain organization of Escherichia coli isocitrate lyase. Acta Crystallogr Sect D Biol Crystallogr 57, 1209–1218.[CrossRef]
    [Google Scholar]
  3. Cozzone, A. J. ( 1998; ). Regulation of acetate metabolism by protein phosphorylation in enteric bacteria. Annu Rev Microbiol 52, 127-164.[CrossRef]
    [Google Scholar]
  4. Davail, S., Feller, G., Narinx, E. & Gerday, C. ( 1994; ). Cold adaptation of proteins: purification, characterization, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41. J Biol Chem 269, 17448-17453.
    [Google Scholar]
  5. Diehl, P. & McFadden, B. A. ( 1993; ). Site-directed mutagenesis of lysine 193 in Escherichia coli isocitrate lyase by use of unique restriction enzyme site elimination. J Bacteriol 175, 2263-2270.
    [Google Scholar]
  6. Diehl, P. & McFadden, B. A. ( 1994; ). The importance of four histidine residues in isocitrate lyase from Escherichia coli. J Bacteriol 176, 927-931.
    [Google Scholar]
  7. Gerday, C., Aittaleb, M., Arpigny, J. L., Baise, E., Chessa, J. P., Garsoux, G., Petrescu, I. & Feller, G. ( 1997; ). Psychrophilic enzymes: a thermodynamic challenge. Biochim Biophys Acta 1342, 119-131.[CrossRef]
    [Google Scholar]
  8. Gui, L., Sunnarborg, A., Pan, B. & LaPorte, D. C. ( 1996; ). Autoregulation of iclR, the gene encoding the repressor of the glyoxylate bypass operon. J Bacteriol 178, 321-324.
    [Google Scholar]
  9. Henikoff, S., Haughn, G. W., Calvo, J. M. & Wallace, J. C. ( 1988; ). A large family of bacterial activator proteins. Proc Natl Acad Sci USA 85, 6602-6606.[CrossRef]
    [Google Scholar]
  10. Hochachka, P. W. & Somero, G. N. (1984). Biochemical Adaptation. Princeton, NJ: Princeton University Press.
  11. Ishii, A., Ochiai, T., Imagawa, S., Fukunaga, N., Sasaki, S., Minowa, O., Mizuno, Y. & Shiokawa, H. ( 1987; ). Isozymes of isocitrate dehydrogenase from an obligately psychrophilic bacterium, Vibrio sp. strain ABE-1: purification, and modulation of activities by growth conditions. J Biochem 102, 1489-1498.
    [Google Scholar]
  12. Ishii, A., Suzuki, M., Sahara, T., Takada, Y., Sasaki, S. & Fukunaga, N. ( 1993; ). Gene encoding two isocitrate dehydrogenase isozymes of a psychrophilic bacterium, Vibrio sp. strain ABE-1. J Bacteriol 175, 6873-6880.
    [Google Scholar]
  13. Kenan, C. ( 1998; ). Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180, 2063-2071.
    [Google Scholar]
  14. Ko, Y. H. & McFadden, B. A. ( 1990; ). Alkylation of isocitrate lyase from Escherichia coli by 3-bromopyruvate. Arch Biochem Biophys 278, 373-380.[CrossRef]
    [Google Scholar]
  15. Ko, Y. H., Vanni, P., Munske, G. R. & McFadden, B. A. ( 1991; ). Substrate-decreased modification by diethyl pyrocarbonate of two histidines in isocitrate lyase from Escherichia coli. Biochemistry 30, 7451-7456.[CrossRef]
    [Google Scholar]
  16. Ko, Y. H., Cremo, C. R. & McFadden, B. A. ( 1992; ). Vanadate-dependent photomodification of serine 319 and 321 in the active site of isocitrate lyase from Escherichia coli. J Biol Chem 267, 91-95.
    [Google Scholar]
  17. Kornberg, H. L. ( 1966; ). The role and control of the glyoxylate cycle in Escherichia coli. Biochem J 99, 1-11.
    [Google Scholar]
  18. Low, P. S., Bada, J. L. & Somero, G. N. ( 1973; ). Temperature adaptation of enzymes: roles of the free energy, the enthalpy, and the entropy of activation. Proc Natl Acad Sci USA 70, 430-432.[CrossRef]
    [Google Scholar]
  19. Matsuoka, M. & McFadden, B. A. ( 1988; ). Isolation, hyperexpression, and sequencing of the aceA gene encoding isocitrate lyase in Escherichia coli. J Bacteriol 170, 4528-4536.
    [Google Scholar]
  20. Negre, D., Cortay, J. C., Galinier, A., Sauve, P. & Cozzone, A. J. ( 1992; ). Specific interactions between the IclR repressor of the acetate operon of Escherichia coli and its operator. J Mol Biol 228, 23-29.[CrossRef]
    [Google Scholar]
  21. Ochiai, T., Fukunaga, N. & Sasaki, S. ( 1979; ). Purification and some properties of two NADP+-specific isocitrate dehydrogenases from an obligatory psychrophilic marine bacterium, Vibrio sp., strain ABE-1. J Biochem 86, 377-384.
    [Google Scholar]
  22. Ouchterlony, O. (1968). Handbook of Immunodiffusion and Immunoelectrophoresis. Ann Arbor, MI: Ann Arbor Science Publishers.
  23. Qoronfleh, M. W., Debouck, C. & Keller, J. ( 1992; ). Identification and characterization of novel low-temperature-inducible promoters of Escherichia coli. J Bacteriol 174, 7902-7909.
    [Google Scholar]
  24. Rehman, A. & McFadden, B. A. ( 1996; ). The consequences of replacing histidine 356 in isocitrate lyase from Escherichia coli. Arch Biochem Biophys 336, 309-315.[CrossRef]
    [Google Scholar]
  25. Rehman, A. & McFadden, B. A. ( 1997a; ). Serine 319 and 321 are functional in isocitrate lyase from Escherichia coli. Curr Microbiol 34, 205-211.[CrossRef]
    [Google Scholar]
  26. Rehman, A. & McFadden, B. A. ( 1997b; ). Lysine 194 is functional in isocitrate lyase from Escherichia coli. Curr Microbiol 35, 14-17.[CrossRef]
    [Google Scholar]
  27. Rehman, A. & McFadden, B. A. ( 1997c; ). Cysteine 195 has a critical functional role in catalysis by isocitrate lyase from Escherichia coli. Curr Microbiol 35, 267-269.[CrossRef]
    [Google Scholar]
  28. Reinscheid, D. J., Eikmanns, B. J. & Sahm, H. ( 1994a; ). Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme. J Bacteriol 176, 3474-3483.
    [Google Scholar]
  29. Reinscheid, D. J., Eikmanns, B. J. & Sahm, H. ( 1994b; ). Malate synthase from Corynebacterium glutamicum: sequence analysis of the gene and biochemical characterization of the enzyme. Microbiology 140, 3099-3108.[CrossRef]
    [Google Scholar]
  30. Russell, R. J., Gerike, U., Danson, M. J., Hough, D. W. & Taylor, G. L. ( 1998; ). Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6, 351-361.[CrossRef]
    [Google Scholar]
  31. Sahara, T., Suzuki, M., Tsuruha, J., Takada, Y. & Fukunaga, N. ( 1999; ). Cis-acting elements responsible for low-temperature-inducible expression of the gene coding for the thermolabile isocitrate dehydrogenase isozyme of a psychrophilic bacterium, Vibrio sp. strain ABE-1. J Bacteriol 181, 2602-2611.
    [Google Scholar]
  32. Sambrook, J. & Russell, D. (2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  33. Serrano, J. A. & Bonete, M. J. ( 2001; ). Sequencing, phylogenetic and transcriptional analysis of the glyoxylate bypass operon (ace) in the halophilic archaeon Haloferax volcanii. Biochim Biophys Acta 1520, 154-162.[CrossRef]
    [Google Scholar]
  34. Sharma, V., Sharma, S., Hoener zu Bentrup, K., McKinney, J. D., Russell, D. G., Jacobs, W. R.Jr & Sacchettini, J. C. ( 2000; ). Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis. Nat Struct Biol 7, 663-668.[CrossRef]
    [Google Scholar]
  35. Shine, J. & Dalgarno, L. ( 1974; ). The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71, 1342-1346.[CrossRef]
    [Google Scholar]
  36. Suzuki, M., Sahara, T., Tsuruha, J., Takada, Y. & Fukunaga, N. ( 1995; ). Differential expression in Escherichia coli of the Vibrio sp. strain ABE-1 icd-I and icd-II genes encoding structurally different isocitrate dehydrogenase isozymes. J Bacteriol 177, 2138-2142.
    [Google Scholar]
  37. Takada, Y., Ochiai, T., Okuyama, H., Nishi, K. & Sasaki, S. ( 1979; ). An obligatory psychrophilic bacterium isolated on the Hokkaido coast. J Gen Appl Microbiol 25, 11-19.[CrossRef]
    [Google Scholar]
  38. Tanaka, Y., Yoshida, T., Watanabe, K., Izumi, Y. & Mitsunaga, T. ( 1997; ). Characterization, gene cloning and expression of isocitrate lyase involved in the assimilation of one-carbon compounds in Hyphomicrobium methylovorum GM2. Eur J Biochem 249, 820-825.[CrossRef]
    [Google Scholar]
  39. Thieringer, H. A., Jones, P. G. & Inoue, M. ( 1998; ). Cold shock and adaptation. Bioessays 20, 49-57.[CrossRef]
    [Google Scholar]
  40. Vanni, P., Giachetti, E., Pinzauti, G. & McFadden, B. A. ( 1990; ). Comparative structure, function and regulation of isocitrate lyase, an important assimilatory enzyme. Comp Biochem Physiol 95B, 431-458.
    [Google Scholar]
  41. Watanabe, S., Takada, Y. & Fukunaga, N. ( 2001; ). Purification and characterization of a cold-adapted isocitrate lyase and a malate synthase from Colwellia maris, a psychrophilic bacterium. Biosci Biotechnol Biochem 65, 1095-1103.[CrossRef]
    [Google Scholar]
  42. Watanabe, S., Yamaoka, N., Fukunaga, N. & Takada, Y. ( 2002; ). Purification and characterization of a cold-adapted isocitrate lyase, and expression analysis of the cold-inducible isocitrate lyase gene from a psychrophilic bacterium, Colwellia psychrerythraea. Extremophiles 6, DOI 10.1007/s00792-002-0271-x.
    [Google Scholar]
  43. Wilson, R. B. & Maloy, S. R. ( 1987; ). Isolation and characterization of Salmonella typhimurium glyoxylate shunt mutants. J Bacteriol 169, 3029-3034.
    [Google Scholar]
  44. Yumoto, I., Kawasaki, K., Iwata, H., Matsuyama, H. & Okuyama, H. ( 1998; ). Assignment of Vibrio sp. strain ABE-1 to Colwellia maris sp. nov., a new psychrophilic bacterium. Int J Syst Bacteriol 48, 1357-1362.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-8-2579
Loading
/content/journal/micro/10.1099/00221287-148-8-2579
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error