1887

Abstract

Most filamentous bacteria in biological nutrient removal (BNR) processes have not been identified beyond their morphotype and simple staining reactions. Furthermore, the majority of sludge filaments observed under the microscope do not hybridize to commonly used phylogenetic probes for well characterized bacterial phyla such as the , , and . Specific 16S rRNA-targeted oligonucleotide probes were designed for the phylum (green non-sulfur bacteria) and optimized for use in fluorescence hybridization. have been implicated in BNR systems by phylogenetic identification of filamentous bacteria isolated by micromanipulation from sludge and culture-independent molecular phylogenetic surveys. The predominant morphotype responding to the probes was filamentous and these filaments were generally abundant in 10 Australian full-scale and two laboratory-scale BNR samples examined. Filamentous bacteria responding to a subdivision 1 probe were rare in the samples, whereas subdivision 3 filaments were very common in some sludges. This is in direct contrast to results obtained from molecular phylogenetic surveys of BNR systems where most sludge 16S rDNA clones belong to subdivision 1 and only a few to subdivision 3. It is suggested that filamentous bacteria belonging to the phylum account for a large fraction of phylogenetically uncharacterized filaments in BNR systems and are likely to be abundant in such systems on a global scale.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-8-2309
2002-08-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/8/1482309a.html?itemId=/content/journal/micro/10.1099/00221287-148-8-2309&mimeType=html&fmt=ahah

References

  1. Amann R. I. 1995; In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual ppMMEM-3.3.6/1–MMEM-3.3.6/15 Edited by Akkermans A. D. L., van Elsas J. D., de Bruijn F. J.. London: Kluwer;
    [Google Scholar]
  2. Amann R., Fuchs B. M., Behrens S. 2001; The identification of microorganisms by fluorescence in situ hybridisation. Curr Opinion Biotechnol12:231–236[CrossRef]
    [Google Scholar]
  3. Beer M., Seviour E. M., Kong Y., Cunningham M. A., Blackall L. L., Seviour R. J. 2002; Phylogeny of the filamentous bacterium Eikelboom type 1851, and design and application of a 16S rRNA targeted oligonucleotide for its in situ identification in activated sludge. FEMS Microbiol Lett207:179–183[CrossRef]
    [Google Scholar]
  4. Blackall L. L. 1994; Molecular identification of activated sludge foaming bacteria. Water Sci Technol29:35–42
    [Google Scholar]
  5. Blackall L. L., Seviour E. M., Cunningham M. A., Seviour R. J., Hugenholtz P. 1994;Microthrix parvicella ’ is a novel, deep branching member of the actinomycetes subphylum. Syst Appl Microbiol17:513–518
    [Google Scholar]
  6. Bond P. L., Hugenholtz P., Keller J., Blackall L. L. 1995; Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol61:1910–1916
    [Google Scholar]
  7. Boomer S. M., Lodge D. P., Dutton B. E., Pierson B. 2002; Molecular characterization of novel red green nonsulfur bacteria from five distinct hot spring communities in Yellowstone National Park. Appl Environ Microbiol68:346–355[CrossRef]
    [Google Scholar]
  8. Bossier P., Verstraete W. 1996; Triggers for microbial aggregation in activated sludge. Appl Microbiol Biotechnol45:1–6[CrossRef]
    [Google Scholar]
  9. Bradford D., Hugenholtz P., Seviour E. M., Cunningham M., Stratton H., Seviour R. J., Blackall L. L. 1996; 16S rRNA analysis of isolates obtained from Gram-negative, filamentous bacteria micromanipulated from activated sludge. Syst Appl Microbiol19:334–343[CrossRef]
    [Google Scholar]
  10. Chandler D. P., Brockman F. J., Bailey T. J., Fredrickson J. K. 1998; Phylogenetic diversity of Archaea and Bacteria in a deep subsurface paleosol. Microb Ecol36:37–50[CrossRef]
    [Google Scholar]
  11. Crocetti G. R., Hugenholtz P., Bond P. L., Schuler A., Keller J., Jenkins D., Blackall L. L. 2000; Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol66:1175–1182[CrossRef]
    [Google Scholar]
  12. Daims H., Bruhl A., Amann R., Schleifer K. H., Wagner M. 1999; The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol22:434–444[CrossRef]
    [Google Scholar]
  13. Dalevi D., Hugenholtz P., Blackall L. L. 2001; A multiple-outgroup approach to resolving division-level phylogenetic relationships using 16S rDNA data. Int J Syst Evol Microbiol51:385–391
    [Google Scholar]
  14. DeLong E. F., Wickham G. S., Pace N. R. 1989; Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science243:1360–1363[CrossRef]
    [Google Scholar]
  15. Demharter W., Hensel R., Smida J., Stackebrandt E. 1989; Sphaerobacter thermophilus gen. nov., sp. nov., a deeply rooting member of the actinomycetes subdivision isolated from thermophilically treated sewage sludge. Syst Appl Microbiol11:261–266[CrossRef]
    [Google Scholar]
  16. Eikelboom D. H., van Buijsen H. J. J. 1983; Microscopic Sludge Investigation Manual, 2nd edn. Delft: TNO Research Institute for Environmental Hygiene, Water and Soil Division;
    [Google Scholar]
  17. Eikelboom D., Andreadakis A., Andreason K. 1998; Survey of filamentous populations in nutrient removal plants in four European countries. Water Sci Technol37:281–289[CrossRef]
    [Google Scholar]
  18. Erhart R., Bradford D., Seviour R. J., Amann R. I., Blackall L. L. 1997; Development and use of fluorescent in situ hybridization probes for the detection and identification of ‘ Microthrix parvicella ’ in activated sludge. Syst Appl Microbiol20:310–318[CrossRef]
    [Google Scholar]
  19. Garrity G. M., Holt J. G. 2001; Chloroflexi phy. nov. In Bergey’s Manual of Systematic Bacteriology , 2nd edn.vol. 1The Archaea and the Deeply Branching and Phototrophic Bacteria pp427–446 Edited by Boone D. R., Castenholz R. W.. New York: Springer;
    [Google Scholar]
  20. Gich F., Garcia-Gil J., Overmann J. 2001; Previously unknown and phylogenetically diverse members of the green nonsulfur bacteria are indigenous to freshwater lakes. Arch Microbiol177:1–10[CrossRef]
    [Google Scholar]
  21. Howarth R., Unz R. F., Seviour E. M., Seviour R. J., Blackall L. L., Pickup R. W., Gwyn Jones J., Yaguchi J., Head I. M. 1999; Phylogenetic relationships of filamentous sulfur bacteria ( Thiothrix spp. and Eikelboom type 021N bacteria) isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov., Thiothrix fructosivorans sp.nov and Thiothrix defluvii sp. nov. Int J Syst Bacteriol49:1817–1827[CrossRef]
    [Google Scholar]
  22. Hugenholtz P., Goebel B. M. 2001; The polymerase chain reaction as a tool to investigate microbial diversity in environmental samples. In Environmental Molecular Microbiology: Protocols and Applications pp31–42 Edited by Rochelle P. A.. New York: Horizon Scientific;
    [Google Scholar]
  23. Hugenholtz P., Goebel B. M., Pace N. R. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol180:4765–4774
    [Google Scholar]
  24. Hugenholtz P., Tyson G. W., Webb R. I., Wagner A. M., Blackall L. L. 2001a; Investigation of candidate division TM7, a recently recognized major lineage of the domain bacteria with no known pure-culture representatives. Appl Environ Microbiol67:411–419[CrossRef]
    [Google Scholar]
  25. Hugenholtz P., Tyson G. W., Blackall L. L. 2001b; Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridisation. In Gene Probes: Principles and Protocols pp29–42 Edited by Aquino de Muro M., Rapley R.. London: Humana;
    [Google Scholar]
  26. Jenkins D., Richard M. G., Daigger G. T. 1993; Manual on the Causes and Control of Activated Sludge Bulking and Foaming New York: Lewis;
    [Google Scholar]
  27. Juretschko S., Loy A., Lehner A., Wagner M. 2002; The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst Appl Microbiol25:84–99[CrossRef]
    [Google Scholar]
  28. Kanagawa T., Kamagata Y., Aruga S., Kohno T., Horn M., Wagner M. 2000; Phylogenetic analysis of and oligonucleotide probe development for Eikelboom Type 021N filamentous bacteria isolated from bulking activated sludge. Appl Environ Microbiol66:5043–5052[CrossRef]
    [Google Scholar]
  29. Klein M., Friedrich M., Fishbain S., Hugenholtz P., Abicht H., Rogers A., Blackall L. L., Stahl D. A., Wagner M. 2001; Multiple lateral transfer events of dissimilatory sulfite reductase genes between major lineages of Bacteria . J Bacteriol183:6028–6035[CrossRef]
    [Google Scholar]
  30. Lee N., Nielsen P. H., Andreasen K. H., Juretschko S., Nielsen J. L., Schleifer K. H., Wagner M. 1999; Combination of fluorescent in situ hybridization and microautoradiography – a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol65:1289–1297
    [Google Scholar]
  31. Liu J. R., Burrell P., Seviour E. M., Soddell J. A., Blackall L. L., Seviour R. J. 2000; The filamentous bacterial morphotype ‘ Nostocoida limicola ’ I contains at least two previously described genera in the low G+C gram positive bacteria. Syst Appl Microbiol23:528–534[CrossRef]
    [Google Scholar]
  32. Liu J.-R., McKenzie C. A., Seviour E. M., Webb R. I., Blackall L. L., Saint C. P., Seviour R. J. 2001; Phylogeny of the filamentous bacterium ‘ Nostocoida limicola ’ III from activated sludge. Int J Syst Evol Microbiol51:195–202
    [Google Scholar]
  33. Maymó-Gatell X., Chien Y., Gossett J. M., Zinder S. H. 1997; Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science276:1568–1571[CrossRef]
    [Google Scholar]
  34. Neef A., Amann R., Schlesner H., Schleifer K.-H. 1998; Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology144:3257–3266[CrossRef]
    [Google Scholar]
  35. Nübel U., Bateson M. M., Madigan M. T., Kühl M., Ward D. M. 2001; Diversity and distribution in hypersaline microbial mats of bacteria related to Chloroflexus spp. Appl Environ Microbiol67:4365–4371[CrossRef]
    [Google Scholar]
  36. Reichenbach H. 1992; The genus Herpetosiphon . In The Prokaryotes – A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications pp3785–3805 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H.. New York: Springer;
    [Google Scholar]
  37. Sekiguchi Y., Takahashi H., Kamagata Y., Ohashi A., Harada H. 2001; In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl Environ Microbiol67:5740–5749[CrossRef]
    [Google Scholar]
  38. Senghas E., Lingens F. 1985; Characterization of a new gram-negative filamentous bacterium isolated from bulking sludge. Appl Microbiol Biotechnol21:118–124
    [Google Scholar]
  39. Seviour R. J., Blackall L. L. 1999; The Microbiology of Activated Sludge London: Kluwer;
    [Google Scholar]
  40. Snaidr J., Amann R., Huber I., Ludwig W., Schleifer K.-H. 1997; Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol63:2884–2896
    [Google Scholar]
  41. Stahl D. A., Amann R. 1991; Development and application of nucleic acid probes. In Nucleic Acid Techniques in Bacterial Systematics pp205–248 Edited by Stackebrandt E., Goodfellow M.. Chichester: Academic Press;
    [Google Scholar]
  42. Trick I., Lingens F. 1984; Characterization of Herpetosiphon spec . – a gliding filamentous bacterium from bulking sludge. Appl Microbiol Biotechnol19:191–198[CrossRef]
    [Google Scholar]
  43. Wagner M., Amann R., Kämpfer P., Assmus B., Hartmann A., Hutzler P., Springer N., Schleifer K.-H. 1994; Identification and in situ detection of Gram-negative filamentous bacteria in activated sludge. Syst Appl Microbiol17:405–417[CrossRef]
    [Google Scholar]
  44. Woese C. R. 1987; Bacterial evolution. Microbiol Rev51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-8-2309
Loading
/content/journal/micro/10.1099/00221287-148-8-2309
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error