1887

Abstract

Benzaldehyde and its metabolic intermediates were effectively degraded by the brown-rot basidiomycetes and . The pathway of benzaldehyde degradation was elucidated by the identification of fungal metabolites produced upon the addition of benzaldehyde and its metabolic intermediates. The oxidation and reduction occurred simultaneously, forming benzyl alcohol and benzoic acid as major products. Hydroxylation reactions, which seemed to be a key step, occurred on benzaldehyde and benzoic acid, but not on benzyl alcohol, to form corresponding 4-hydroxyl and 3,4-dihydroxyl derivatives. 1-Formyl derivatives were oxidized to 1-carboxyl derivatives at several metabolic stages. All of these reactions resulted in the formation of 3,4-dihydroxybenzoic acid. This was further metabolized via the decarboxylation reaction to yield 1,2,4-trihydroxybenzene, which may be susceptible to the ring-fission reaction. Ring-U-C-labelled benzaldehyde and benzoic acid were effectively mineralized, clearly indicating that the brown-rot basidiomycetes are capable of metabolizing certain aromatic compounds to CO and HO, despite the fact that brown-rot fungi cannot degrade polymeric lignin. Inhibitor experiments, using hydroxyl radical scavengers, catalase and cytochrome P450 inhibitors, strongly suggested that the aromatic hydroxylation reactions found in the brown-rot fungi are catalysed by intracellular enzyme(s), but not by Fenton-reaction-derived hydroxyl radicals.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-6-1939
2002-06-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/6/1481939a.html?itemId=/content/journal/micro/10.1099/00221287-148-6-1939&mimeType=html&fmt=ahah

References

  1. Backa S., Gierer J., Reitberger T. 1992; Hydroxyl radical activity by brown-rot fungi studied with a new chemiluminescence method. Holzforschung 46:61–67 [CrossRef]
    [Google Scholar]
  2. Bavendamm W. 1928; Originalabhandlungen. Über das Vorkommen und den Nachweis von Oxydasen bei Holzzerstörenden Pilzen. Z Pflanzenkr Pflanzenschuz 38:257–276
    [Google Scholar]
  3. Bezalel L., Hadar Y., Fu P. P., Freeman J. P., Cerniglia C. 1996; Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus . Appl Environ Microbiol 62:2554–2559
    [Google Scholar]
  4. Brock B. J., Gold M. H. 1996; 1,4-Benzoquinone reductase from the basidiomycete Phanerochaete chrysosporium : spectral and kinetic analysis. Arch Biochem Biophys 331:31–40 [CrossRef]
    [Google Scholar]
  5. Brown W., Cowling E. B., Falkehag S. I. 1968; Molecular size distributions of lignins liberated enzymatically from wood. Sven Papperstidning 22:811–821
    [Google Scholar]
  6. Chandhoke V., Goodell B., Jellison J., Fekete F. A. 1992; Oxidation of 2-keto-4-thiomethylbutyric acid (KTBA) by iron-binding compounds produced by the wood-decaying fungus Gloeophyllum trabeum . FEMS Microbiol Lett 90:263–266 [CrossRef]
    [Google Scholar]
  7. Crawford R. L. 1981 Lignin Biodegradation and Transformation New York: Wiley-Interscience;
    [Google Scholar]
  8. D’souza T. M., Boominathan K., Reddy C. A. 1996; Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR. Appl Environ Microbiol 62:3739–3744
    [Google Scholar]
  9. Eilers A., Rüngeling E., Stündl U. M., Gottschalk G. 1999; Metabolism of 2,4,6-trinitrotoluene by the white-rot fungus Bjerkandera adusta DSM 3375 depends on cytochrome P -450. Appl Microbiol Biotechnol 53:75–80 [CrossRef]
    [Google Scholar]
  10. Enoki A., Takahashi M., Tanaka H., Fuse G. 1985; Degradation of lignin-related and wood components by white-rot and brown-rot fungi. Mokuzai Gakkaishi 31:397–408
    [Google Scholar]
  11. Eriksson K.-E. L., Blanchette R. A., Ander P. 1990 Microbial and Enzymatic Degradation of Wood and Wood Components Berlin: Springer;
    [Google Scholar]
  12. Franklin M. R. 1972; Inhibition of hepatic oxidative xenobiotic metabolism by piperonyl butoxide. Biochem Pharmacol 21:3287–3299 [CrossRef]
    [Google Scholar]
  13. Gold M. H., Wariishi H., Valli K. 1989; Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium . In Biocatalysis in Agricultural BiotechnologyACS Symposium Series vol. 389 pp 127–140 Edited by Whitaker J. R., Sonnet P. E. Washington DC: American Chemical Society;
    [Google Scholar]
  14. Goodell B., Jellison J., Liu J., Daniel G., Paszczynski A., Fekete F., Krishnamurthy S., Jun L., Xu G. 1997; Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53:133–162 [CrossRef]
    [Google Scholar]
  15. Hirano T., Tanaka H., Enoki A. 1995; Extracellular substance from the brown-rot basidiomycete Tyromyces palustris that reduces molecular oxygen to hydroxyl radicals and ferric iron to ferrous iron. Mokuzai Gakkaishi 41:334–341
    [Google Scholar]
  16. Hirano T., Tanaka H., Enoki A. 1997; Relationship between production of hydroxyl radicals and degradation of wood by the brown-rot fungus, Tyromyces palustris . Holzforschung 51:389–395 [CrossRef]
    [Google Scholar]
  17. Hiratsuka N., Wariishi H., Tanaka H. 2001; Degradation of diphenyl ether herbicides by the lignin-degrading basidiomycete Coriolus versicolor . Appl Microbiol Biotechnol 57:563–571 [CrossRef]
    [Google Scholar]
  18. Hyde S. M., Wood P. 1997; A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana : Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiology 143:259–266 [CrossRef]
    [Google Scholar]
  19. Ichinose H., Wariishi H., Tanaka H. 1999; Bioconversion of recalcitrant 4-methyldibenzothiophene to water-extractable products using lignin-degrading basidiomycete Coriolus versicolor . Biotechnol Prog 15:706–714 [CrossRef]
    [Google Scholar]
  20. Ichinose H., Wariishi H., Tanaka H. 2002; Identification and characterization of novel cytochrome P450 genes from the white-rot fungus Coriolus versicolor . Appl Microbiol Biotechnol 58:97–105 [CrossRef]
    [Google Scholar]
  21. Kerem Z., Bao W., Hammel K. 1998; Rapid polyether cleavage via extracellular one-electron oxidation by a brown-rot basidiomycete. Proc Natl Acad Sci USA 95:10373–10377 [CrossRef]
    [Google Scholar]
  22. Kerem Z., Jensen K. A., Hammel K. 1999; Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum : evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett 446:49–54 [CrossRef]
    [Google Scholar]
  23. Kirk T. K. 1975; Effects of a brown-rot fungus, Lenzites trabea , on lignin in spruce wood. Holzforschung 29:99–107 [CrossRef]
    [Google Scholar]
  24. Kirk T. K., Farrell R. L. 1987; Enzymatic ‘‘combustion’’: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505 [CrossRef]
    [Google Scholar]
  25. Kirk T. K., Kelman A. 1965; Lignin degradation as related to the phenoloxidases of selected wood-decaying basidiomycetes. Phytopathology 55:739–745
    [Google Scholar]
  26. Kirk T. K., Schultz E., Connors W. J., Lorenz L. F., Zeikus J. G. 1978; Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium . Arch Microbiol 117:277–285 [CrossRef]
    [Google Scholar]
  27. Koenigs J. W. 1975; Hydrogen peroxide and iron: a microbial cellulolytic system. Biotechnol Bioeng Symp 5:151–159
    [Google Scholar]
  28. Masaphy S., Levanon D., Henis Y., Venkateswarlu K., Kelly S. L. 1996; Microsomal and cytosolic cytochrome P450 mediated benzo(a)pyrene hydroxylation in Pleurotus pulmonarius . Biotechnol Lett 17:967–974
    [Google Scholar]
  29. Murray M., Reidy G. F. 1990; Selectivity in the inhibition of mammalian cytochromes P-450 by chemical agents. Pharmacol Rev 42:85–101
    [Google Scholar]
  30. Ortiz de Montellano P. R., Mathews J. M. 1981; Autocatalytic alkylation of the cytochrome P-450 prosthetic haem group by 1-aminobenzotriazole. Isolation of an NN-bridged benzyne-protoporphyrin IX adduct. Biochem J 195:761–764
    [Google Scholar]
  31. Paszczynski A., Crawford R., Funk D., Goodell B. 1999; De novo synthesis of 4,5-dimethoxycatechol and 2,5-dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum . Appl Environ Microbiol 65:674–679
    [Google Scholar]
  32. Sundman V., Näse L. 1971; A simple plate test for direct visualization of biological lignin degradation. Papperi ja Puu 53:67–71
    [Google Scholar]
  33. Tien M. 1987; Properties of ligninase from Phanerochaete chrysosporium and their possible applications. CRC Crit Rev Microbiol 15:141–168 [CrossRef]
    [Google Scholar]
  34. Valli K., Gold M. H. 1991; Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium . J Bacteriol 173:345–352
    [Google Scholar]
  35. Valli K., Wariishi H., Gold M. H. 1992; Degradation of 2,7-dichlorodibenzo- p -dioxin by the white-rot basidiomycete, Phanerochaete chrysosporium . J Bacteriol 174:2131–2137
    [Google Scholar]
  36. Wariishi H., Valli K., Gold M. H. 1989; Oxidative cleavage of a phenolic diarylpropane lignin model dimer by manganese peroxidase from Phanerochaete chrysosporium . Biochemistry 28:6017–6023 [CrossRef]
    [Google Scholar]
  37. Wariishi H., Valli K., Gold M. H. 1992; Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium : kinetic mechanism and role of chelators. J Biol Chem 267:23688–23695
    [Google Scholar]
  38. Zabel R. A., Morrell J. J. 1992 Wood Microbiology: Decay and its Prevention San Diego: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-6-1939
Loading
/content/journal/micro/10.1099/00221287-148-6-1939
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error