1887

Abstract

The ability of methylotrophic α-proteobacteria to grow with dichloromethane (DCM) as source of carbon and energy has long been thought to depend solely on a single cytoplasmic enzyme, DCM dehalogenase, which converts DCM to formaldehyde, a central intermediate of methylotrophic growth. The gene encoding DCM dehalogenase of DM4 was expressed from a plasmid in closely related strains lacking this enzyme. The ability to grow with DCM could be conferred upon CM4, a chloromethane degrader, but not upon AM1. In addition, growth of strain AM1 with methanol was impaired in the presence of DCM. The possibility that single-carbon (C) utilization pathways in dehalogenating strains differed from those discovered in strain AM1 was addressed. Homologues of tetrahydrofolate-linked and tetrahydromethanopterin-linked C utilization genes of strain AM1 were detected in both strain DM4 and strain CM4, and cloning and sequencing of several of these genes from strain DM4 revealed very high sequence identity (965–997%) to the corresponding genes of strain AM1. The expression of transcriptional fusions of selected genes of the tetrahydrofolate- and tetrahydromethanopterin-linked pathways from strain DM4 was investigated. The data obtained suggest that the expression levels of some C utilization genes in DM4 grown with DCM may differ from those observed during growth with methanol.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-6-1915
2002-06-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/6/1481915a.html?itemId=/content/journal/micro/10.1099/00221287-148-6-1915&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaeffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  2. Anthony C. 1982; The Biochemistry of Methylotrophs London: Academic Press;
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 2001; Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  4. Benes V., Hostomsky Z., Arnold L., Paces V. 1993; M13 and pUC vectors with new unique restriction sites for cloning. Gene130:151–152[CrossRef]
    [Google Scholar]
  5. Bullock W. O., Fernandez J. M., Short J. M. 1987; XL1-Blue – a high-efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. Biotechniques5:376–378
    [Google Scholar]
  6. Chistoserdov A. Y., Chistoserdova L. V., McIntire W. S., Lidstrom M. E. 1994; Genetic organization of the mau gene cluster in Methylobacterium extorquens AM1: complete nucleotide sequence and generation and characteristics of mau mutants. J Bacteriol176:4052–4065
    [Google Scholar]
  7. Chistoserdova L. V., Lidstrom M. E. 1992; Cloning, mutagenesis and physiological effect of a hydroxypyruvate reductase gene from Methylobacterium extorquens AM1. J Bacteriol174:71–77
    [Google Scholar]
  8. Chistoserdova L. V., Lidstrom M. E. 1994; Genetics of the serine cycle in Methylobacterium extorquens AM1: identification of sgaA and mtdA and sequences of sgaA , hprA and mtdA . J Bacteriol176:1957–1968
    [Google Scholar]
  9. Chistoserdova L., Vorholt J. A., Thauer R. K., Lidstrom M. E. 1998; C-1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea. Science281:99–102[CrossRef]
    [Google Scholar]
  10. Doronina N. V., Trotsenko Y. A., Tourova T. P., Kuznetzov B. B., Leisinger T. 2000; Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov. – novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst Appl Microbiol23:210–218[CrossRef]
    [Google Scholar]
  11. Fassel T. A., Buchholz L. A., Collins M. L. P., Remsen C. C. 1992; Localization of methanol dehydrogenase in two strains of methylotrophic bacteria detected by immunogold labeling. Appl Environ Microbiol58:2302–2307
    [Google Scholar]
  12. Gälli R., Leisinger T. 1988; Plasmid analysis and cloning of the dichloromethane-utilization genes of Methylobacterium sp. DM4. J Gen Microbiol134:943–952
    [Google Scholar]
  13. Goenrich M., Bartoschek S., Hagemeier C. H., Griesinger C., Vorholt J. A. 2002; A glutathione-dependent formaldehyde activating enzyme (Gfa) from Paracoccus denitrificans detected and purified via 2D proton exchange spectroscopy. J Biol Chem277:3069–3072[CrossRef]
    [Google Scholar]
  14. Haas D. 2001; lacZ fusions report gene expression, don’t they?. Microbiology147:1993–1995
    [Google Scholar]
  15. Hagemeier C., Chistoserdova L., Lidstrom M., Thauer R. K., Vorholt J. 2000; Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1. Eur J Biochem267:3762–3769[CrossRef]
    [Google Scholar]
  16. Hagemeier C. H., Bartoschek S., Griesinger C., Thauer R. K., Vorholt J. A. 2001; Re-face stereospecificity of NADP dependent methylenetetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1 as determined by NMR spectroscopy. FEBS Lett494:95–98[CrossRef]
    [Google Scholar]
  17. Kayser M. F., Vuilleumier S. 2001; Dehalogenation of dichloromethane by dichloromethane dehalogenase/glutathione S -transferase leads to the formation of DNA adducts. J Bacteriol183:5209–5212[CrossRef]
    [Google Scholar]
  18. Kayser M. F., Stumpp M. T., Vuilleumier S. 2000; DNA polymerase I is essential for growth of Methylobacterium dichloromethanicum DM4 with dichloromethane. J Bacteriol182:5433–5439[CrossRef]
    [Google Scholar]
  19. La Roche S. D., Leisinger T. 1990; Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S -transferase supergene family. J Bacteriol172:164–171
    [Google Scholar]
  20. La Roche S. D., Leisinger T. 1991; Identification of dcmR , the regulatory gene governing expression of dichloromethane dehalogenase in Methylobacterium sp. DM4. J Bacteriol173:6714–6721
    [Google Scholar]
  21. Landi S. 2000; Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mutat Res463:247–283[CrossRef]
    [Google Scholar]
  22. Leisinger T., Bader R., Hermann R., Schmid-Appert M., Vuilleumier S. 1994; Microbes, enzymes and genes involved in dichloromethane utilization. Biodegradation5:237–248[CrossRef]
    [Google Scholar]
  23. Marx C. J., Lidstrom M. E. 2001; Development of versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology147:2065–2075
    [Google Scholar]
  24. McDonald I. R., Doronina N. V., Trotsenko Y. A., McAnulla C., Murrell J. C. 2001; Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment. Int J Syst Evol Microbiol51:119–122
    [Google Scholar]
  25. McKay D., Shiu W. Y., Ma K. C. 1993; Volatile Organic Chemicals Boca Raton, FL: Lewis Publishers;
    [Google Scholar]
  26. Murrell J. 1994; Molecular genetics of methane oxidation. Biodegradation5:145–159[CrossRef]
    [Google Scholar]
  27. Pomper B. K., Vorholt J. A. 2001; Characterization of the formyltransferase from Methylobacterium extorquens AM1. Eur J Biochem268:4769–4775[CrossRef]
    [Google Scholar]
  28. Pomper B. K., Vorholt J. A., Chistoserdova L., Lidstrom M. E., Thauer R. K. 1999; A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. Eur J Biochem261:475–480[CrossRef]
    [Google Scholar]
  29. Rotmel R. K., Chakrabarty A. M., Berry A., Darzins A. 1991; Genetic systems in Pseudomonas. Methods Enzymol 204. 485–514
  30. Schmid-Appert M. 1996; Untersuchungen zur Regulation des Dichlormethan-Dehalogenase Gens aus Methylobacterium sp. Stamm DM4 und Struktur der angrenzenden DNA-Region Zürich: ETH Dissertation Nr;11646
    [Google Scholar]
  31. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology1:784–790[CrossRef]
    [Google Scholar]
  32. Studer A., Stupperich E., Vuilleumier S., Leisinger T. 2001; Chloromethane: tetrahydrofolate methyl transfer by two proteins from Methylobacterium chloromethanicum strain CM4. Eur J Biochem268:2931–2938[CrossRef]
    [Google Scholar]
  33. van Agteren M. H., Keuning S., Janssen D. B. 1998; Handbook on Biodegradation and Biological Treatment of Hazardous Organic Compounds pp79–91 Dordrecht: Kluwer;
    [Google Scholar]
  34. van Spanning R. J. M., de Vries S., Harms N. 2000; Coping with formaldehyde during C1 metabolism of Paracoccus denitrificans . J Mol Catal B8:37–50[CrossRef]
    [Google Scholar]
  35. Vannelli T., Messmer M., Studer A., Vuilleumier S., Leisinger T. 1999; A corrinoid-dependent catabolic pathway for growth of a Methylobacterium strain with chloromethane. Proc Natl Acad Sci USA96:4615–4620[CrossRef]
    [Google Scholar]
  36. Vorholt J. A., Chistoserdova L., Lidstrom M. E., Thauer R. K. 1998; The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol180:5351–5356
    [Google Scholar]
  37. Vorholt J. A., Chistoserdova L., Stolyar S. M., Thauer R. K., Lidstrom M. E. 1999; Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J Bacteriol181:5750–5757
    [Google Scholar]
  38. Vorholt J. A., Marx C. J., Lidstrom M. E., Thauer R. K. 2000; Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol182:6645–6650[CrossRef]
    [Google Scholar]
  39. Vuilleumier S. 2002; Coping with a halogenated one-carbon diet: aerobic dichloromethane-mineralising bacteria. In Biotechnology for the Environment, Focus on Biotechnology Series pp105–131 Edited by Reineke W., Agathos S.. Dordrecht: Kluwer;
    [Google Scholar]
  40. Vuilleumier S., Leisinger T. 1996; Protein engineering studies of dichloromethane dehalogenase/glutathione S -transferase from Methylophilus sp. strain DM11. Ser12 but not Tyr6 is required for enzyme activity. Eur J Biochem239:410–417[CrossRef]
    [Google Scholar]
  41. Vuilleumier S., Pagni M. 2002; Bacterial glutathione S-transferases: new lessons from bacterial genomes. Appl Microbiol Biotechnol58:138–146[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-6-1915
Loading
/content/journal/micro/10.1099/00221287-148-6-1915
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error