1887

Abstract

Omega-3 polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (20:5-3; EPA) and docosahexaenoic acid (22:6-3; DHA) have been shown to be of major importance in the promotion of cardiovascular health, proper human development and the prevention of some cancers. A high proportion of bacterial isolates from low-temperature and high-pressure marine environments produce EPA or DHA. This paper presents the sequence of a 33 kbp locus from the deep-sea bacterium strain SS9 which includes four of the five genes required for EPA biosynthesis. As with other bacterial (olyunsaturated atty cid) genes, the deduced amino acid sequences encoded by the SS9 genes reveal large multidomain proteins that are likely to catalyse EPA biosynthesis by a novel polyketide synthesis mechanism. RNase protection experiments separated the SS9 genes into two transcriptional units, and . The transcriptional start site was identified. Cultivation at elevated hydrostatic pressure or reduced temperature did not increase gene expression despite the resulting increase in percentage composition of EPA under these conditions. However, a regulatory mutant was characterized which showed both increased expression of and elevated EPA percentage composition. This result suggests that a regulatory factor exists which coordinates transcription. Additional consideration regarding the activities required for PUFA synthesis is provided together with comparative analyses of bacterial genes and gene products.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-6-1903
2002-06-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/6/1481903a.html?itemId=/content/journal/micro/10.1099/00221287-148-6-1903&mimeType=html&fmt=ahah

References

  1. Allen E. E., Bartlett D. H. 2000; FabF is required for piezoregulation of cis -vaccenic acid levels and piezophilic growth in the deep-sea bacterium Photobacterium profundum strain SS9. J Bacteriol182:1264–1271[CrossRef]
    [Google Scholar]
  2. Allen E. E., Facciotti D., Bartlett D. H. 1999; Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at low temperature and high pressure. Appl Environ Microbiol65:1710–1720
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  4. Angerer P., Schacky C. V. 2000; n -3 polyunsaturated fatty acids and the cardiovascular system. Curr Opin Clin Nutr Metab Care3:439–445[CrossRef]
    [Google Scholar]
  5. Bajpai P., Bajpai P. K. 1993; Eicosapentaenoic acid (EPA) production from microorganisms: a review. J Biotechnol30:161–183[CrossRef]
    [Google Scholar]
  6. Beaudoin R., Michaelson L. V., Hey S. J., Lewis M. J., Shewry P. R., Sayanova O., Napier J. A. 2000; Heterologous reconstitution in yeast of the polyunsaturated fatty acid biosynthetic pathway. Proc Natl Acad Sci USA97:6421–6426[CrossRef]
    [Google Scholar]
  7. Bisang C., Long P. F., Cortes J.. 7 other authors 1999; A chain initiation factor common to both modular and aromatic polyketide synthases. Nature401:502–505[CrossRef]
    [Google Scholar]
  8. Brahamsha B. 1996; A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus . Appl Environ Microbiol62:1747–1751
    [Google Scholar]
  9. Campbell E. L., Cohen M. F., Meeks J. C. 1997; A polyketide-synthase-like gene is involved in the synthesis of heterocyst glycolipids in Nostoc punctiforme strain ATCC 29133. Arch Microbiol167:251–258[CrossRef]
    [Google Scholar]
  10. Chae J. C., Kim Y., Kim Y. C., Zylstra G. J., Kim C. K. 2000; Genetic structure and functional implication of the fcb gene cluster for hydrolytic dechlorination of 4-chlorobenzoate from Pseudomonas sp. DJ-12. Gene 258:109–116[CrossRef]
    [Google Scholar]
  11. Chi E., Bartlett D. H. 1993; Use of a reporter gene to follow high-pressure signal transduction in the deep-sea bacterium Photobacterium sp. strain SS9. J Bacteriol175:7533–7540
    [Google Scholar]
  12. Chilukuri L. N., Bartlett D. H. 1997; Isolation and characterization of the gene encoding single-stranded-DNA-binding protein (SSB) from four marine Shewanella strains that differ in their temperature and pressure optima for growth. Microbiology143:1163–1174[CrossRef]
    [Google Scholar]
  13. Corpet F., Gouzy J., Kahn D. 1999; Recent improvements of the ProDom database of protein domain families. Nucleic Acids Res27:263–267[CrossRef]
    [Google Scholar]
  14. Cronan J. E., Rock C. O. others 1996; Biosynthesis of membrane lipids. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp612–636 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. DeLong E. F., Yayanos A. A. 1986; Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Appl Environ Microbiol51:730–737
    [Google Scholar]
  16. DeLong E. F., Franks D. G., Yayanos A. A. 1997; Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol63:2105–2108
    [Google Scholar]
  17. Erwin J., Bloch K. 1964; Biosynthesis of unsaturated fatty acids in microorganisms. Science143:1006–1012[CrossRef]
    [Google Scholar]
  18. Fujii D. K., Fulco A. J. 1977; Biosynthesis of unsaturated fatty acids in Bacilli : hyperinduction and modulation of desaturase synthesis. J Biol Chem252:3660–3670
    [Google Scholar]
  19. Heath R. J., Rock C. O. 1996; Roles of the FabA and FabZ β-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J Biol Chem271:27795–27801[CrossRef]
    [Google Scholar]
  20. Higgins D. G., Sharp P. M. 1988; clustal: a package for performing multiple sequence alignment on a microcomputer. Gene73:237–244[CrossRef]
    [Google Scholar]
  21. Hopwood D. A., Sherman D. H. 1990; Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet24:37–66[CrossRef]
    [Google Scholar]
  22. Kim U.-J., Shizuya H., de Jong P. J., Birren B., Simon M. 1992; Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Res20:1083–1085[CrossRef]
    [Google Scholar]
  23. Labrie F., Simard J., Luuthe V.. 13 other authors 1992; Structure and tissue-specific expression of 3 beta-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase genes in human and rat classical and peripheral steroidogenic tissues. J Steroid Biochem Mol Biol41:421–438[CrossRef]
    [Google Scholar]
  24. Lambalot R. H., Gehring A. M., Flugel R. S.. 6 other authors 1996; A new enzyme superfamily – the phosphopantetheinyl transferases. Chem Biol3:923–936[CrossRef]
    [Google Scholar]
  25. Lauritzen L., Hansen H. S., Jorgensen M. H., Michaelsen K. F. 2001; The essentiality of long chain n -3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res40:1–94[CrossRef]
    [Google Scholar]
  26. Metz J. G., Roessler P., Facciotti D.. 10 other authors 2001; Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science293:290–293[CrossRef]
    [Google Scholar]
  27. Nakano M. M., Corbell N., Besson J., Zuber P. 1992; Isolation and characterization of sfp : a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis . Mol Gen Genet232:313–321
    [Google Scholar]
  28. Napier J. A., Michaelson L. V. 2001; Towards the production of pharmaceutical fatty acids in transgenic plants. J Sci Food Agric81:883–888[CrossRef]
    [Google Scholar]
  29. Nicholas K. B., Nicholas H. B. J. 1997; GeneDoc Pittsburg, PA: Pittsburg Supercomputing Center;
    [Google Scholar]
  30. Nichols D. S., Nichols P. D., McMeekin T. A. 1992; Anaerobic production of polyunsaturated fatty acids by Shewanella putrefaciens strain ACAM 342. FEMS Microbiol Lett98:117–122[CrossRef]
    [Google Scholar]
  31. Nichols D. S., Nichols P. D., McMeekin T. A. 1993; Polyunsaturated fatty acids in Antarctic bacteria. Antarctic Sci2:149–160
    [Google Scholar]
  32. Ochman H., Medhora M. M., Garza D., Hartle D. L. others 1990; Amplification of flanking sequences by inverse PCR. In PCR Protocols: a Guide to Methods and Application pp219–227 Edited by Innis M. A.. London: Academic Press;
    [Google Scholar]
  33. Omura S. 1981; Cerulenin. Methods Enzymol72:520–532
    [Google Scholar]
  34. Parker-Barnes J. M., Das T., Bobik E.. 5 other authors 2000; Identification and characterization of an enzyme involved in the elongation of n -6 and n -3 polyunsaturated fatty acids. Proc Natl Acad Sci USA97:8284–8289[CrossRef]
    [Google Scholar]
  35. Pfeifer B. A., Khosla C. 2001; Biosynthesis of polyketides in heterologous hosts. Microbiol Mol Biol Rev65:106–118[CrossRef]
    [Google Scholar]
  36. Rawlings B. J. 1998; Biosynthesis of fatty acids and related metabolites. Nat Prod Rep15:275–308[CrossRef]
    [Google Scholar]
  37. Rawlings B. J. 2001; Type I polyketide biosynthesis in bacteria (Part B. Nat Prod Rep18:231–281[CrossRef]
    [Google Scholar]
  38. Reuter K., Mofid M. R., Marahiel M. A., Ficner R. 1999; Crystal structure of the surfactin synthetase-activating enzyme Sfp: a prototype of the 4′-phosphopantetheinyl transferase superfamily. EMBO J18:6823–6831[CrossRef]
    [Google Scholar]
  39. Russell N. J., Nichols D. S. 1999; Polyunsaturated fatty acids in marine bacteria – a dogma rewritten. Microbiology145:767–779[CrossRef]
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Sauer L. A., Dauchy R. T., Blask D. E. 2001; Polyunsaturated fatty acids, melatonin, and cancer prevention. Biochem Pharmacol61:1455–1462[CrossRef]
    [Google Scholar]
  42. Stein J. L., Marsh T. L., Wu K. E., Shizuya H., DeLong E. F. 1996; Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J Bacteriol178:591–599
    [Google Scholar]
  43. Takeyama H., Takeda D., Yazawa K., Yamada A., Matsunaga T. 1997; Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium Synechococcus sp. Microbiology143:2725–2731[CrossRef]
    [Google Scholar]
  44. Tanaka M., Ueno A., Kawasaki K.. 6 other authors 1999; Isolation of clustered genes that are notably homologous to the eicosapentaenoic acid biosynthesis gene cluster from the docosahexaenoic acid-producing bacterium Vibrio marinus strain MP-1. Biotechnol Lett21:939–945[CrossRef]
    [Google Scholar]
  45. Watanabe K., Yazawa K., Kondo K., Kawaguchi A. 1997; Fatty acid synthesis of an eicosapentaenoic acid-producing bacterium: de novo synthesis, chain elongation, and desaturation systems. J Biochem122:467–473[CrossRef]
    [Google Scholar]
  46. Yano Y., Nakayama A., Yoshida K. 1997; Distribution of polyunsaturated fatty acids in bacteria present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl Environ Microbiol63:2572–2577
    [Google Scholar]
  47. Yazawa K. 1996; Production of eicosapentaenoic acid from marine bacteria. Lipids (Supplement)31:S297–S300
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-6-1903
Loading
/content/journal/micro/10.1099/00221287-148-6-1903
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error