1887
Preview this article:
Zoom in
Zoomout

Phenotypic heterogeneity: differential stress resistance among individual cells of the yeast , Page 1 of 1

| /docserver/preview/fulltext/micro/148/2/1480345a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-345
2002-02-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480345a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-345&mimeType=html&fmt=ahah

References

  1. Attfield, P. V., Choi, H. Y., Veal, D. A. & Bell, P. J. L. ( 2001; ). Heterogeneity of stress gene expression and stress resistance among individual cells of Saccharomyces cerevisiae. Mol Microbiol 40, 1000-1008.[CrossRef]
    [Google Scholar]
  2. Avery, S. V. ( 2001; ). Metal toxicity in yeasts and the role of oxidative stress. Adv Appl Microbiol 49, 111-142.
    [Google Scholar]
  3. Avery, S. V., Malkapuram, S., Mateus, C. & Babb, K. S. ( 2000; ). Copper/zinc superoxide dismutase is required for oxytetracycline resistance of Saccharomyces cerevisiae. J Bacteriol 182, 76-80.[CrossRef]
    [Google Scholar]
  4. Brewer, B. J., Chlebowicz-Sledziewska, E. & Fangman, W. L. ( 1984; ). Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae. Mol Cell Biol 4, 2529-2531.
    [Google Scholar]
  5. Chernoff, Y. O., Galkin, A. P., Lewitin, E., Chernova, T. A., Newnam, G. P. & Belenkiy, S. M. ( 2000; ). Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol Microbiol 35, 865-876.[CrossRef]
    [Google Scholar]
  6. Davis, B. D., Dulbecco, R., Eisen, H. N. & Ginsberg, H. S. (1990). Microbiology, 4th edn. Philadelphia: J. B. Lippincott.
  7. Eaglestone, S. S., Cox, B. S. & Tuite, M. F. ( 1999; ). Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J 18, 1974-1981.[CrossRef]
    [Google Scholar]
  8. Elliott, B. & Futcher, B. ( 1993; ). Stress resistance of yeast cells is largely independent of cell cycle phase. Yeast 9, 33-42.[CrossRef]
    [Google Scholar]
  9. Flattery-O’Brien, J. A. & Dawes, I. W. ( 1998; ). Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. J Biol Chem 273, 8561-8571.
    [Google Scholar]
  10. Grant, C. M., MacIver, F. H. & Dawes, I. W. ( 1997; ). Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. FEBS Lett 410, 219-222.[CrossRef]
    [Google Scholar]
  11. Howlett, N. G. & Avery, S. V. ( 1999; ). Flow cytometric investigation of heterogeneous copper-sensitivity in asynchronously grown Saccharomyces cerevisiae. FEMS Microbiol Lett 176, 379-386.[CrossRef]
    [Google Scholar]
  12. Jazwinski, S. M. ( 1996; ). Longevity, genes and aging. Science 273, 54-59.[CrossRef]
    [Google Scholar]
  13. Jensen, R. E., Hobbs, A. E. A., Cerveny, K. L. & Sesaki, H. ( 2000; ). Yeast mitochondrial dynamics: fusion, division, segregation, and shape. Microsc Res Tech 51, 573-583.[CrossRef]
    [Google Scholar]
  14. Kale, S. P. & Jazwinski, S. M. ( 1996; ). Differential response to UV stress and DNA damage during the yeast replicative life span. Dev Genet 18, 154-160.[CrossRef]
    [Google Scholar]
  15. Kennedy, B. K., Austriaco, N. R. & Guarente, L. ( 1994; ). Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J Cell Biol 127, 1985-1993.[CrossRef]
    [Google Scholar]
  16. Kerszberg, M. ( 1996; ). Accurate reading of morphogen concentrations by nuclear receptors: a formal model of complex transduction pathways. J Theor Biol 183, 95-104.[CrossRef]
    [Google Scholar]
  17. Keulers, M., Satroutdinov, A. D., Suzuki, T. & Kuriyama, H. ( 1996; ). Synchronization affector of autonomous short-period-sustained oscillation of Saccharomyces cerevisiae. Yeast 12, 673-682.[CrossRef]
    [Google Scholar]
  18. Leroy, C., Mann, C. & Marsolier, M. C. ( 2001; ). Silent repair accounts for cell cycle specificity in the signalling of oxidative DNA lesions. EMBO J 20, 2896-2906.[CrossRef]
    [Google Scholar]
  19. Ludovico, P., Sansonetty, F. & Cõrte-Real, M. ( 2001; ). Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology 147, 3335-3343.
    [Google Scholar]
  20. McAdams, H. H. & Arkin, A. ( 1997; ). Stochastic mechanisms in gene expression. Proc Natl Acad Sci U S A 94, 814-819.[CrossRef]
    [Google Scholar]
  21. McAdams, H. H. & Arkin, A. ( 1999; ). It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet 15, 65-69.[CrossRef]
    [Google Scholar]
  22. Mateus, C. & Avery, S. V. ( 2000; ). Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast 16, 1313-1323.[CrossRef]
    [Google Scholar]
  23. Nitiss, J. L. & Wang, J. C. ( 1996; ). Mechanisms of cell killing by drugs that trap covalent complexes between DNA topoisomerases and DNA. Mol Pharmacol 50, 1095-1102.
    [Google Scholar]
  24. Pal, C. ( 2001; ). Yeast prions and evolvability. Trends Genet 17, 167-169.[CrossRef]
    [Google Scholar]
  25. Park, J. I., Grant, C. M., Davies, M. J. & Dawes, I. W. ( 1998; ). The cytoplasmic Cu,Zn superoxide dismutase of Saccharomyces cerevisiae is required for resistance to freeze-thaw stress – generation of free radicals during freezing and thawing. J Biol Chem 273, 22921-22928.[CrossRef]
    [Google Scholar]
  26. Paulsson, J., Berg, O. G. & Ehrenberg, M. ( 2000; ). Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. Proc Natl Acad Sci USA 97, 7148-7153.[CrossRef]
    [Google Scholar]
  27. Perez-Martin, J., Uria, J. A. & Johnson, A. D. ( 1999; ). Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J 18, 2580-2592.[CrossRef]
    [Google Scholar]
  28. Salvioli, S., Dobrucki, J., Moretti, L., Troiano, L., Fernandez, M. G., Pinti, M., Pedrazzi, J., Franceschi, C. & Cossarizza, A. ( 2000; ). Mitochondrial heterogeneity during staurosporine-induced apoptosis in HL60 cells: analysis at the single cell and single organelle level. Cytometry 40, 189-197.[CrossRef]
    [Google Scholar]
  29. Schmitt, M. J., Klavehn, P., Wang, J., Schonig, I. & Tipper, D. J. ( 1996; ). Cell cycle studies on the mode of action of yeast K28 killer toxin. Microbiology 142, 2655-2662.[CrossRef]
    [Google Scholar]
  30. Sena, E. P., Welch, J. W., Halvorson, H. O. & Fogel, S. ( 1975; ). Nuclear and mitochondrial deoxyribonucleic acid replication during mitosis in Saccharomyces cerevisiae. J Bacteriol 123, 497-504.
    [Google Scholar]
  31. Soll, D. R. ( 1997; ). Gene regulation during high-frequency switching in Candida albicans. Microbiology 143, 279-288.[CrossRef]
    [Google Scholar]
  32. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. & Futcher, B. ( 1998; ). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9, 3273-3297.[CrossRef]
    [Google Scholar]
  33. Steels, H., James, S. A., Roberts, I. N. & Stratford, M. ( 2000; ). Sorbic acid resistance: the inoculum effect. Yeast 16, 1173-1183.[CrossRef]
    [Google Scholar]
  34. Thompson, J. S., Hecht, A. & Grunstein, M. ( 1993; ). Histones and the regulation of heterochromatin in yeast. Cold Spring Harbor Symp Quant Biol 58, 247-256.[CrossRef]
    [Google Scholar]
  35. Traven, A., Wong, J. M. S., Xu, D., Sopta, M. & Ingles, J. C. ( 2001; ). Altered nuclear gene expression profiles in a yeast mitochondrial DNA mutant. J Biol Chem 276, 4020-4027.[CrossRef]
    [Google Scholar]
  36. True, H. L. & Lindquist, S. L. ( 2000; ). A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477-483.[CrossRef]
    [Google Scholar]
  37. Wang, J. Q., Liu, W. D., Uno, T., Tonozuka, H., Mitsui, K. & Tsurugi, K. ( 2000; ). Cellular stress responses oscillate in synchronization with the ultradian oscillation of energy metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 189, 9-13.[CrossRef]
    [Google Scholar]
  38. Wang, J. Q., Liu, W. D., Mitsui, K. & Tsurugi, K. ( 2001; ). Evidence for the involvement of the GTS1 gene product in the regulation of biological rhythms in the continuous culture of the yeast Saccharomyces cerevisiae. FEBS Lett 489, 81-86.[CrossRef]
    [Google Scholar]
  39. Wheals, A. E. & Lord, P. G. ( 1992; ). Clonal heterogeneity in specific growth rate of Saccharomyces cerevisiae cells. Cell Prolif 25, 217-223.[CrossRef]
    [Google Scholar]
  40. Zeyl, C. & DeVisser, J. A. G. M. ( 2001; ). Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae. Genetics 157, 53-61.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-345
Loading
/content/journal/micro/10.1099/00221287-148-2-345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error