1887
Preview this article:
Zoom in
Zoomout

Phenotypic heterogeneity: differential stress resistance among individual cells of the yeast , Page 1 of 1

| /docserver/preview/fulltext/micro/148/2/1480345a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-2-345
2002-02-01
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/2/1480345a.html?itemId=/content/journal/micro/10.1099/00221287-148-2-345&mimeType=html&fmt=ahah

References

  1. Attfield P. V., Choi H. Y., Veal D. A., Bell P. J. L.. 2001; Heterogeneity of stress gene expression and stress resistance among individual cells of Saccharomyces cerevisiae . Mol Microbiol40:1000–1008[CrossRef]
    [Google Scholar]
  2. Avery S. V.. 2001; Metal toxicity in yeasts and the role of oxidative stress. Adv Appl Microbiol49:111–142
    [Google Scholar]
  3. Avery S. V., Malkapuram S., Mateus C., Babb K. S.. 2000; Copper/zinc superoxide dismutase is required for oxytetracycline resistance of Saccharomyces cerevisiae . J Bacteriol182:76–80[CrossRef]
    [Google Scholar]
  4. Brewer B. J., Chlebowicz-Sledziewska E., Fangman W. L.. 1984; Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae . Mol Cell Biol4:2529–2531
    [Google Scholar]
  5. Chernoff Y. O., Galkin A. P., Lewitin E., Chernova T. A., Newnam G. P., Belenkiy S. M.. 2000; Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol Microbiol35:865–876[CrossRef]
    [Google Scholar]
  6. Davis B. D., Dulbecco R., Eisen H. N., Ginsberg H. S.. 1990; Microbiology , 4th edn. Philadelphia: J. B. Lippincott;
    [Google Scholar]
  7. Eaglestone S. S., Cox B. S., Tuite M. F.. 1999; Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J18:1974–1981[CrossRef]
    [Google Scholar]
  8. Elliott B., Futcher B.. 1993; Stress resistance of yeast cells is largely independent of cell cycle phase. Yeast9:33–42[CrossRef]
    [Google Scholar]
  9. Flattery-O’Brien J. A., Dawes I. W.. 1998; Hydrogen peroxide causes RAD9 -dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. J Biol Chem273:8561–8571
    [Google Scholar]
  10. Grant C. M., MacIver F. H., Dawes I. W.. 1997; Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae . FEBS Lett410:219–222[CrossRef]
    [Google Scholar]
  11. Howlett N. G., Avery S. V.. 1999; Flow cytometric investigation of heterogeneous copper-sensitivity in asynchronously grown Saccharomyces cerevisiae . FEMS Microbiol Lett176:379–386[CrossRef]
    [Google Scholar]
  12. Jazwinski S. M.. 1996; Longevity, genes and aging. Science273:54–59[CrossRef]
    [Google Scholar]
  13. Jensen R. E., Hobbs A. E. A., Cerveny K. L., Sesaki H.. 2000; Yeast mitochondrial dynamics: fusion, division, segregation, and shape. Microsc Res Tech51:573–583[CrossRef]
    [Google Scholar]
  14. Kale S. P., Jazwinski S. M.. 1996; Differential response to UV stress and DNA damage during the yeast replicative life span. Dev Genet18:154–160[CrossRef]
    [Google Scholar]
  15. Kennedy B. K., Austriaco N. R., Guarente L.. 1994; Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J Cell Biol127:1985–1993[CrossRef]
    [Google Scholar]
  16. Kerszberg M.. 1996; Accurate reading of morphogen concentrations by nuclear receptors: a formal model of complex transduction pathways. J Theor Biol183:95–104[CrossRef]
    [Google Scholar]
  17. Keulers M., Satroutdinov A. D., Suzuki T., Kuriyama H.. 1996; Synchronization affector of autonomous short-period-sustained oscillation of Saccharomyces cerevisiae . Yeast12:673–682[CrossRef]
    [Google Scholar]
  18. Leroy C., Mann C., Marsolier M. C.. 2001; Silent repair accounts for cell cycle specificity in the signalling of oxidative DNA lesions. EMBO J20:2896–2906[CrossRef]
    [Google Scholar]
  19. Ludovico P., Sansonetty F., Cõrte-Real M.. 2001; Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology147:3335–3343
    [Google Scholar]
  20. McAdams H. H., Arkin A.. 1997; Stochastic mechanisms in gene expression. Proc Natl Acad Sci U S A94:814–819[CrossRef]
    [Google Scholar]
  21. McAdams H. H., Arkin A.. 1999; It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet15:65–69[CrossRef]
    [Google Scholar]
  22. Mateus C., Avery S. V.. 2000; Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast16:1313–1323[CrossRef]
    [Google Scholar]
  23. Nitiss J. L., Wang J. C.. 1996; Mechanisms of cell killing by drugs that trap covalent complexes between DNA topoisomerases and DNA. Mol Pharmacol50:1095–1102
    [Google Scholar]
  24. Pal C.. 2001; Yeast prions and evolvability. Trends Genet17:167–169[CrossRef]
    [Google Scholar]
  25. Park J. I., Grant C. M., Davies M. J., Dawes I. W.. 1998; The cytoplasmic Cu,Zn superoxide dismutase of Saccharomyces cerevisiae is required for resistance to freeze-thaw stress – generation of free radicals during freezing and thawing. J Biol Chem273:22921–22928[CrossRef]
    [Google Scholar]
  26. Paulsson J., Berg O. G., Ehrenberg M.. 2000; Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. Proc Natl Acad Sci USA97:7148–7153[CrossRef]
    [Google Scholar]
  27. Perez-Martin J., Uria J. A., Johnson A. D.. 1999; Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J18:2580–2592[CrossRef]
    [Google Scholar]
  28. Salvioli S., Dobrucki J., Moretti L., Troiano L., Fernandez M. G., Pinti M., Pedrazzi J., Franceschi C., Cossarizza A.. 2000; Mitochondrial heterogeneity during staurosporine-induced apoptosis in HL60 cells: analysis at the single cell and single organelle level. Cytometry40:189–197[CrossRef]
    [Google Scholar]
  29. Schmitt M. J., Klavehn P., Wang J., Schonig I., Tipper D. J.. 1996; Cell cycle studies on the mode of action of yeast K28 killer toxin. Microbiology142:2655–2662[CrossRef]
    [Google Scholar]
  30. Sena E. P., Welch J. W., Halvorson H. O., Fogel S.. 1975; Nuclear and mitochondrial deoxyribonucleic acid replication during mitosis in Saccharomyces cerevisiae . J Bacteriol123:497–504
    [Google Scholar]
  31. Soll D. R.. 1997; Gene regulation during high-frequency switching in Candida albicans . Microbiology143:279–288[CrossRef]
    [Google Scholar]
  32. Spellman P. T., Sherlock G., Zhang M. Q., Iyer V. R., Anders K., Eisen M. B., Brown P. O., Botstein D., Futcher B.. 1998; Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell9:3273–3297[CrossRef]
    [Google Scholar]
  33. Steels H., James S. A., Roberts I. N., Stratford M.. 2000; Sorbic acid resistance: the inoculum effect. Yeast16:1173–1183[CrossRef]
    [Google Scholar]
  34. Thompson J. S., Hecht A., Grunstein M.. 1993; Histones and the regulation of heterochromatin in yeast. Cold Spring Harbor Symp Quant Biol58:247–256[CrossRef]
    [Google Scholar]
  35. Traven A., Wong J. M. S., Xu D., Sopta M., Ingles J. C.. 2001; Altered nuclear gene expression profiles in a yeast mitochondrial DNA mutant. J Biol Chem276:4020–4027[CrossRef]
    [Google Scholar]
  36. True H. L., Lindquist S. L.. 2000; A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature407:477–483[CrossRef]
    [Google Scholar]
  37. Wang J. Q., Liu W. D., Uno T., Tonozuka H., Mitsui K., Tsurugi K.. 2000; Cellular stress responses oscillate in synchronization with the ultradian oscillation of energy metabolism in the yeast Saccharomyces cerevisiae . FEMS Microbiol Lett189:9–13[CrossRef]
    [Google Scholar]
  38. Wang J. Q., Liu W. D., Mitsui K., Tsurugi K.. 2001; Evidence for the involvement of the GTS1 gene product in the regulation of biological rhythms in the continuous culture of the yeast Saccharomyces cerevisiae. FEBS Lett489:81–86[CrossRef]
    [Google Scholar]
  39. Wheals A. E., Lord P. G.. 1992; Clonal heterogeneity in specific growth rate of Saccharomyces cerevisiae cells. Cell Prolif25:217–223[CrossRef]
    [Google Scholar]
  40. Zeyl C., DeVisser J. A. G. M.. 2001; Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae . Genetics157:53–61
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-2-345
Loading
/content/journal/micro/10.1099/00221287-148-2-345
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error