1887

Abstract

A hidden Markov model of σ RNA polymerase cofactor recognition sites in , containing either the common or the extended −10 motifs, has been constructed based on experimentally verified σ recognition sites. This work suggests that more information exists at the initiation site of transcription in both types of promoters than previously thought. When tested on the entire genome, the model predicts that approximately half of the σ recognition sites are of the extended type. Some of the response-regulator aspartate phosphatases were among the predictions of promoters containing extended sites. The expression of and was confirmed by site-directed mutagenesis to depend on the extended −10 region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-9-2417
2001-09-01
2020-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/9/1472417a.html?itemId=/content/journal/micro/10.1099/00221287-147-9-2417&mimeType=html&fmt=ahah

References

  1. Camacho A., Salas M.. 1999; Effect of mutations in the ‘extended −10’ motif of three Bacillus subtilis sigmaA–RNA polymerase-dependent promoters. J Mol Biol286:683–693[CrossRef]
    [Google Scholar]
  2. Chan B., Spassky A., Busby S.. 1990; The organization of open complexes between Escherichia coli RNA polymerase either with or without consensus −35 sequences. Biochem J270:141–148
    [Google Scholar]
  3. Durbin R., Eddy S., Krogh A., Mitchison G.. 1998; Markov chains and hidden Markov models. In Biological Sequence Analysis. Probabilistic Models of Proteins and Nucleic Acids pp46–80 Cambridge, MA: Cambridge University Press;
    [Google Scholar]
  4. Helmann J. D.. 1995; Compilation and analysis of Bacillus subtilis σA-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res23:2351–2360[CrossRef]
    [Google Scholar]
  5. Huang X., Helmann J. D.. 1998; Identification of target promoters for the Bacillus subtilis sigma(X) factor using a consensus-directed search. J Mol Biol279:165–173[CrossRef]
    [Google Scholar]
  6. Huang X., Fredrick K. L., Helmann J. D.. 1998; Promoter recognition by Bacillus subtilis sigma W: autoregulation and partial overlap with the sigma X regulon. J Bacteriol180:3765–3770
    [Google Scholar]
  7. Jiang M., Grau R., Perego M.. 2000; Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subtilis. J Bacteriol182:303–310[CrossRef]
    [Google Scholar]
  8. Keilty S., Rosenberg M.. 1987; Constitutive function of a prositively regulated promoter reveals new sequences essential for activity. J Biol Chem262:6389–6395
    [Google Scholar]
  9. Kunst F., Ogasawara N., Moszer I.. 148 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature390:249–256[CrossRef]
    [Google Scholar]
  10. Lazazzera B. A., Kurtser I. G., McQuade R. S., Grossman A. D.. 1999; An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. J Bacteriol1815193–5200
    [Google Scholar]
  11. Lewis R. J., Brannigan J. A., Offen W. A., Smith I., Wilkinson A. J.. 1998; An evolutionary link between sporulation and prophage induction in the structure of a repressor: anti-repressor complex. J Mol Biol283:907–912[CrossRef]
    [Google Scholar]
  12. Lewis R. J., Krzywda S., Brannigan J. A., Turkenburg J. P., Dodson E. J., Wilkinson A. J., Muchová K., Barák I.. 2000; The trans -activation domain of the sporulation response regulator Spo0A revealed by X-ray crystallography. Mol Microbiol38:198–212[CrossRef]
    [Google Scholar]
  13. Miller J. H.. 1972; Assay of β-galactosidase. In Experiments in Molecular Genetics pp352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  14. Mueller J. P., Bukusoglu G., Sonenshein A. L.. 1992; Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP–ComA signal transduction system. J Bacteriol174:4361–4373
    [Google Scholar]
  15. Pedersen A. G., Engelbrecht J.. 1995; Investigations of Escherichia coli promoter sequences with artificial neural networks: new signals discovered upstream of the transcriptional startpoint. Proc Int Conf Intell Syst Mol Biol3:292–299
    [Google Scholar]
  16. Ponnambalam S., Webster C., Bingham A., Busby S.. 1986; Transcription initiation at the Escherichia coli galactose operon promoters in the absence of the normal −35 region sequences. J Biol Chem261:16043–16048
    [Google Scholar]
  17. Rosenberg M., Court D.. 1979; Regulation sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet13:319–373[CrossRef]
    [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A. R.. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA74:5463–5467[CrossRef]
    [Google Scholar]
  19. Saxild H. H., Jacobsen J. H., Nygaard P.. 1995; Functional analysis of the Bacillus subtilis purT gene encoding formate-dependent glycinamide ribonucleotide transformylase. Microbiology141:2211–2218[CrossRef]
    [Google Scholar]
  20. Saxild H. H., Andersen L. N., Hammer K.. 1996; dra–nupC–pdp operon of Bacillus subtilis : nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR -encoded DeoR repressor protein. J Bacteriol178:424–434
    [Google Scholar]
  21. Shannon C. E.. 1948; A mathematical theory of communication. Bell Syst Tech J27:379–423 623–656[CrossRef]
    [Google Scholar]
  22. SubtiList 1999; Release R15.1 Current URLhttp://bioweb.pasteur.fr/GenoList/SubtiList
    [Google Scholar]
  23. Voskuil M. I., Chambliss G. H.. 1998; The −16 region of Bacillus subtilis and other gram-positive bacterial promoters. Nucleic Acids Res26:3584–3590[CrossRef]
    [Google Scholar]
  24. Zeng X., Saxild H. H.. 1999; Identification and characterization of a DeoR-specific operator sequence essential for induction of dra–nupC–pdp operon expression in Bacillus subtilis. J Bacteriol181:1719–1727
    [Google Scholar]
  25. Zhang Y., Begley T. P.. 1991; Cloning, sequencing and regulation of thiA , a thiamin biosynthesis gene from Bacillus subtilis. Gene198:73–82
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-9-2417
Loading
/content/journal/micro/10.1099/00221287-147-9-2417
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error