1887

Abstract

High-resolution data of actively gliding wild-type bacteria of four different species and of four different gliding mutants of were obtained from scanning electron micrographs. By shock freezing and freeze drying, motility-associated surface patterns could be fixed and consequently distinct intermediate states of motion could be observed for the first time. It is shown that these topographic patterns are immediately lost when gliding motility is stopped by blocking the respiratory chain with potassium cyanide or sodium azide. From the surface topography, the mode of action of the gliding apparatus of all four bacterial species examined can be described as a twisted circularly closed ‘band’. During gliding, groups of nodes of the supertwisted apparatus show evidence of travelling like waves along the trichomes. However, the spacing between the nodes is not constant but varies within a certain range. This indicates that they are flexibly modulated as a consequence of the gliding state of the individual trichome.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-939
2001-04-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1470939a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-939&mimeType=html&fmt=ahah

References

  1. Abbanat, D. R., Leadbetter, E. R., Godchaux, W.III & Escher, A. ( 1986; ). Sulphonolipids are molecular determinants of gliding motility. Nature 324, 367-369.[CrossRef]
    [Google Scholar]
  2. Beatson, P. J. & Marshall, K. C. ( 1994; ). A proposed helical mechanism for gliding motility in three gliding bacteria (order Cytophagales). Can J Microbiol 40, 173-183.[CrossRef]
    [Google Scholar]
  3. Burchard, R. P. ( 1981; ). Gliding motility of prokaryotes: ultrastructure, physiology, and genetics. Annu Rev Microbiol 35, 497-529.[CrossRef]
    [Google Scholar]
  4. Burchard, R. P. ( 1984; ). Gliding motility and taxes. In The Myxobacteria , pp. 139-161. Edited by E. Rosenberg. Berlin & Heidelberg: Springer.
  5. Burchard, A. C., Burchard, R. P. & Kloetzel, J. A. ( 1977; ). Intracellular, periodic structures in the gliding bacterium Myxococcus xanthus. J Bacteriol 132, 666-672.
    [Google Scholar]
  6. Castenholz, R. W. ( 1982; ). Motility and taxes. In The Biology of Cyanobacteria , pp. 413-439. Edited by N. G. Carr & B. A. Whitton. Oxford: Blackwell Scientific Publications.
  7. Dickson, M. R., Kouprach, S., Humphrey, B. A. & Marshall, K. C. ( 1980; ). Does gliding motility depend on undulating membranes? Micron 11, 381-382.
    [Google Scholar]
  8. Duxburry, T., Humphrey, B. A. & Marshall, K. C. ( 1980; ). Continuous observations of bacterial gliding motility in a dialysis microchamber: the effects of inhibitors. Arch Microbiol 124, 169-175.
    [Google Scholar]
  9. Dworkin, M. ( 1996; ). Recent advances in the social and developmental biology of myxobacteria. Microbiol Rev 60, 70-102.
    [Google Scholar]
  10. Dzink-Fox, J. L., Leadbetter, E. R. & Godchaux, W.III ( 1997; ). Acetate acts as a protonophore and differentially affects bead movement and cell migration of the gliding bacterium Cytophaga johnsonae (Flavobacterium johnsoniae). Microbiology 143, 3693-3701.[CrossRef]
    [Google Scholar]
  11. Freese, A., Reichenbach, H. & Lünsdorf, H. ( 1997; ). Further characterization and in situ localization of chain-like aggregates of the gliding bacteria Myxococcus fulvus and Myxococcus xanthus. J Bacteriol 179, 1246-1252.
    [Google Scholar]
  12. Gilmore, D. F. & White, D. ( 1985; ). Energy-dependent cell cohesion in myxobacteria. J Bacteriol 161, 113-117.
    [Google Scholar]
  13. Godwin, S. L., Fletcher, M. & Burchard, R. T. ( 1989; ). Interference reflection microscopic study of sites of association between gliding bacteria and glass substrata. J Bacteriol 171, 4589-4594.
    [Google Scholar]
  14. Gorski, L., Leadbetter, E. R. & Godchaux, W.III ( 1991; ). Temporal sequence of trait recovery during phenotypic curing of a Cytophaga johnsonae motility mutant. J Bacteriol 173, 7534-7539.
    [Google Scholar]
  15. Gorski, L., Godchaux, W.III, Leadbetter, E. R. & Wagner, R. R. ( 1992; ). Diversity in surface features of Cytophaga johnsonae motility mutants. J Gen Microbiol 138, 1767-1772.[CrossRef]
    [Google Scholar]
  16. Gorski, L., Godchaux, W.III & Leadbetter, E. R. ( 1993; ). Structural specificity of sugars that inhibit gliding motility of Cytophaga johnsonae. Arch Microbiol 160, 121-125.[CrossRef]
    [Google Scholar]
  17. Häder, D. P. & Vogel, K. ( 1991; ). Interactive image analysis system to determine the motility and velocity of cyanobacterial filaments. J Biochem Biophys Methods 22, 289-300.[CrossRef]
    [Google Scholar]
  18. Halfen, L. N. & Castenholz, R. W. ( 1970; ). Gliding in a blue-green alga: a possible mechanism. Nature 225, 1163-1164.[CrossRef]
    [Google Scholar]
  19. Harold, F. M. ( 1972; ). Conservation and transformation of energy in bacterial membranes. Bacteriol Rev 36, 172-230.
    [Google Scholar]
  20. Harold, F. M. ( 1977; ). Ion currents and physiological functions in microorganisms. Annu Rev Microbiol 31, 181-203.[CrossRef]
    [Google Scholar]
  21. Hartzell, P. & Kaiser, D. ( 1991; ). Upstream gene of the mgl operon controls the level of MglA protein in Myxococcus xanthus. J Bacteriol 173, 7625-7635.
    [Google Scholar]
  22. Hodgkin, J. & Kaiser, D. ( 1979a; ). Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Mol Gen Genet 171, 167-176.[CrossRef]
    [Google Scholar]
  23. Hodgkin, J. & Kaiser, D. ( 1979b; ). Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. Mol Gen Genet 171, 177-191.[CrossRef]
    [Google Scholar]
  24. Humphrey, B. A., Dickson, M. R. & Marshall, K. C. ( 1979; ). Physicochemical and in situ observations on the adhesion of gliding bacteria to surfaces. Arch Microbiol 120, 231-238.[CrossRef]
    [Google Scholar]
  25. Keller, K. H., Grady, N. & Dworkin, M. ( 1983; ). Surface tension gradients: feasible model for gliding motility of Myxococcus xanthus. J Bacteriol 155, 1358-1366.
    [Google Scholar]
  26. Lapidus, I. R. & Berg, H. C. ( 1982; ). Gliding motility of Cytophaga sp. strain U67. J Bacteriol 151, 384-398.
    [Google Scholar]
  27. Lünsdorf, H. & Reichenbach, H. ( 1989; ). Ultrastructural details of the apparatus of gliding motility of Myxococcus fulvus (Myxobacterales). J Gen Microbiol 135, 1633-1641.
    [Google Scholar]
  28. Mathieu, O., Claassen, H. & Weibel, E. R. ( 1978; ). Differential effect of glutaraldehyde and buffer osmolarity on cell dimensions: a study on lung tissue. J Ultrastruct Res 63, 20-24.[CrossRef]
    [Google Scholar]
  29. Pate, J. L. ( 1988; ). Gliding motility in procaryotic cells. Can J Microbiol 34, 459-465.[CrossRef]
    [Google Scholar]
  30. Pate, J. L. & Chang, L.-Y. E. ( 1979; ). Evidence that gliding motility in procaryotic cells is driven by rotary assemblies in the cell envelopes. Curr Microbiol 2, 59-64.[CrossRef]
    [Google Scholar]
  31. Qualls, G. T., Stephens, K. & White, D. ( 1978; ). Morphogenetic movements and multicellular development in the fruiting myxobacterium Stigmatella aurantiaca. Dev Biol 66, 270-274.[CrossRef]
    [Google Scholar]
  32. Reichenbach, H. (1980). Saprospira grandis (Leucotrichales) –Wachstum und Bewegung. Film E 2424 des IWF, Göttingen. Sekt Biol, Ser. 13, Nr. 26/E 2424, 1–21.
  33. Ridgway, H. ( 1977; ). Source of energy for gliding motility in Flexibacter polymorphus: effects of metabolic and respiratory inhibitors on gliding movement. J Bacteriol 131, 544-556.
    [Google Scholar]
  34. Ridgway, H. F. & Lewin, R. A. ( 1988; ). Characterization of gliding motility in Flexibacter polymorphus. Cell Motil Cytoskelet 11, 46-63.[CrossRef]
    [Google Scholar]
  35. Shimkets, L. J. ( 1986; ). Correlation of energy-dependent cell cohesion with social motility in Myxococcus xanthus. J Bacteriol 166, 837-841.
    [Google Scholar]
  36. Spormann, A. M. ( 1999; ). Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol Mol Biol Rev 63, 621-641.
    [Google Scholar]
  37. Spormann, A. M. & Kaiser, A. D. ( 1995; ). Gliding movements in Myxococcus xanthus. J Bacteriol 177, 5846-5852.
    [Google Scholar]
  38. Spormann, A. M. & Kaiser, D. ( 1999; ). Gliding mutants of Myxococcus xanthus with high reversal frequencies and small displacements. J Bacteriol 181, 2593-2601.
    [Google Scholar]
  39. Stackebrandt, E. ( 1985; ). Phylogeny and phylogenetic classification of procaryotes. In Evolution of Procaryotes , pp. 309-334. Edited by K. H. Schleifer & E. Stackebrandt. FEMS Symposium 29. London: Academic Press.
  40. Sutherland, I. W. ( 1979; ). Polysaccharides produced by Cystobacter, Archangium, Sorangium and Stigmatella species. J Gen Microbiol 111, 211-216.[CrossRef]
    [Google Scholar]
  41. Sutherland, I. W. & Thomson, S. ( 1975; ). Comparison of polysaccharides produced by Myxococcus strains. J Gen Microbiol 89, 124-132.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-939
Loading
/content/journal/micro/10.1099/00221287-147-4-939
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error