1887

Abstract

The and genes, encoding the large (α) and small (β) subunit of glutamate synthase (GOGAT), were investigated in this study. Using RT-PCR, a common transcript of and was shown. Reporter gene assays and Northern hybridization experiments revealed that transcription of this operon depends on nitrogen starvation. The expression of is under control of the global repressor protein AmtR as demonstrated by gel shift experiments and analysis of transcription in an deletion strain. In contrast to other bacteria, in GOGAT plays no pivotal role; e.g. and inactivation did not result in growth defects when cells were grown in standard minimal medium and only a slight increase in the doubling time of the corresponding mutant strains was observed in the presence of limiting amounts of ammonia or urea. Additionally, mutant analyses revealed that GOGAT has no essential function in glutamate production by .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-11-2961
2001-11-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/11/1472961a.html?itemId=/content/journal/micro/10.1099/00221287-147-11-2961&mimeType=html&fmt=ahah

References

  1. Abe, S., Takayama, K. & Kinoshita, S. (1967). Taxonomical studies on glutamic acid-producing bacteria. J Gen Microbiol 13, 279-301.[CrossRef] [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. M. & Lipman, J. (1990). Basic local alignment search tool. J Mol Biol 215, 403-410.[CrossRef] [Google Scholar]
  3. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (1987).Current Protocols in Molecular Biology. New York: Greene Publishing Associates & Wiley Interscience.
  4. Belitsky, B. R., Wray, L. V.Jr, Fisher, S. H., Bohannon, D. E. & Sonenshein, A. L. (2000). Role of TnrA in nitrogen source-dependent repression of Bacillus subtilis glutamate synthase gene expression. J Bacteriol 182, 5939-5947.[CrossRef] [Google Scholar]
  5. Börmann, E. R., Eikmanns, B. J. & Sahm, H. (1992). Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase. Mol Microbiol 6, 317-326.[CrossRef] [Google Scholar]
  6. Börmann-El Kholy, E. R., Eikmanns, B. J., Gutmann, M. & Sahm, H. (1993). Glutamate dehydrogenase is not essential for glutamate formation in Corynebacterium glutamicum. Appl Environ Microbiol 59, 2329-2331. [Google Scholar]
  7. Faires, N., Tobisch, S., Bachem, S., Martin-Verstraete, I., Hecker, M. & Stülke, J. (1999). The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis.J Mol Microbiol Biotechnol 1, 141-148. [Google Scholar]
  8. Fisher, S. H. (1999). Regulation of nitrogen metabolism in Bacillus subtilis: vive la différence! Mol Microbiol 32, 223-232.[CrossRef] [Google Scholar]
  9. Grant, S. N. G., Jessee, J., Bloom, F. R. & Hanahan, D. (1990). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87, 4645-4649.[CrossRef] [Google Scholar]
  10. Gutmann, M., Hoischen, C. & Krämer, R. (1992). Carrier-mediated glutamate secretion by Corynebacterium glutamicum under biotin limitation. Biochim Biophys Acta 1112, 115-123.[CrossRef] [Google Scholar]
  11. Jakoby, M., Tesch, M., Sahm, H., Krämer, R. & Burkovski, A. (1997). Isolation of the Corynebacterium glutamicum glnA gene encoding glutamine synthetase I. FEMS Microbiol Lett 154, 81-88.[CrossRef] [Google Scholar]
  12. Jakoby, M., Krämer, R. & Burkovski, A. (1999). Nitrogen regulation in Corynebacterium glutamicum: Isolation of genes involved and biochemical characterization of the corresponding proteins. FEMS Microbiol Lett 173, 303-310.[CrossRef] [Google Scholar]
  13. Jakoby, M., Nolden, L., Meier-Wagner, J., Krämer, R. & Burkovski, A. (2000). AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol Microbiol 37, 964-977.[CrossRef] [Google Scholar]
  14. Keilhauer, C., Eggeling, L. & Sahm, H. (1993). Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175, 5595-5603. [Google Scholar]
  15. Kinoshita, S., Udaka, S. & Shimono, M. (1957). Amino acid fermentation. I. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol 3, 193-205.[CrossRef] [Google Scholar]
  16. Leuchtenberger, W. (1996). Amino acids – technical production and use. In Biotechnology , pp. 455-502. Edited by M. Roehr. Weinheim:VCH.
  17. Magasanik, B. (1996). Regulation of nitrogen assimilation. In Regulation of Gene Expression , pp. 281-290. Edited by E. C. C. Lin & A. S. Lynch. Austin, TX:R. G. Landes.
  18. Meers, J. D., Tempest, D. W. & Brown, C. M. (1970). Glutamine (amide)-2-oxoglutarate-amidotransferase oxidoreductase (NADP) an enzyme involved in the synthesis of glutamate in some bacteria. J Gen Microbiol 64, 187-194.[CrossRef] [Google Scholar]
  19. Merrick, M. J. & Edwards, R. A. (1995). Nitrogen control in bacteria. Microbiol Rev 59, 604-622. [Google Scholar]
  20. Miller, J. H. (1972).Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  21. Nakamura, Y., Gojobori, T. & Ikemura, T. (1997). Codon usage tabulated from the international sequence data bases. Nucleic Acids Res 25, 244-245.[CrossRef] [Google Scholar]
  22. Pátek, M., Eikmanns, B. J., Pátek, J. & Sahm, H. (1996). Promoters of Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. Microbiology 142, 1297-1309.[CrossRef] [Google Scholar]
  23. Pelanda, R., Vanoni, M. A., Perego, M., Piubelli, L., Galizzi, A., Curti, B. & Zanetti, G. (1993). Glutamate synthase genes of the diazotroph Azospirillum brasilense. Cloning, sequencing, and analysis of functional domains. J Biol Chem 268, 3099-3106. [Google Scholar]
  24. Quast, K., Bathe, B., Pühler, A. & Kalinowski, J. (1999). The Corynebacterium glutamicum insertion sequence ISCg2 prefers conserved target sequences located adjacent to genes involved in aspartate and glutamate metabolism. Mol Gen Genet 262, 568-578.[CrossRef] [Google Scholar]
  25. Reitzer, L. J. (1996). Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, l-alanine, and d-alanine. In Escherichia coli and Salmonella, pp. 391–433. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  26. van der Rest, M. E., Lange, C. & Molenaar, D. (1999). A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52, 541-545.[CrossRef] [Google Scholar]
  27. Riba, L., Becerril, B., Servin-Gonzalez, L., Valle, F. & Bolivar, F. (1988). Identification of a functional promoter for the Escherichia coli gdhA gene and its regulation. Gene 71, 233-246.[CrossRef] [Google Scholar]
  28. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989).Molecular Cloning: a Laboratory Manual, 2nd edition, Cold Spring Harbor, NY: Cold Spring Habor Laboratory.
  29. Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G. & Pühler, A. (1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69-73.[CrossRef] [Google Scholar]
  30. Schreier, H. J. (1993). Biosynthesis of glutamine and glutamate and the assimilation of ammonia. In Bacillus subtilis and Other Gram-positive Bacteria , pp. 281-298. Edited by A. L. Sonenshein, J. A. Hoch & R. Losick. Washington, DC:American Society for Microbiology.
  31. Servin-Gonzalez, L. & Bastarrachea, F. (1984). Nitrogen regulation of synthesis of the high affinity methylammonium transport system of Escherichia coli. J Gen Microbiol 130, 3071-3077. [Google Scholar]
  32. Shiio, I. & Ozaki, H. (1970). Regulation of nicotinamide dinucleotide phosphate-specific glutamate dehydrogenase from Brevibacterium flavum, a glutamate-producing bacterium. J Biochem 68, 633-647. [Google Scholar]
  33. Siewe, R. M., Weil, B., Burkovski, A., Eikmanns, B. J., Eikmanns, M. & Krämer, R. (1996). Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum. J Biol Chem 271, 5398-5403.[CrossRef] [Google Scholar]
  34. Siewe, R. M., Weil, B., Burkovski, A., Eggeling, L., Krämer, R. & Jahns, T. (1998). Urea uptake and urease activity in Corynebacterium glutamicum. Arch Microbiol 169, 411-416.[CrossRef] [Google Scholar]
  35. Tachiki, T., Wakisaka, S., Suzuki, H., Kumagai, H. & Tochikura, T. (1981). Glutamine synthetase from Micrococcus glutamicus: effect of nitrogen sources in culture medium on enzyme formation and some properties of crystalline enzyme. Agric Biol Chem 45, 287-292. [Google Scholar]
  36. Tesch, M., Eikmanns, B. J., de Graaf, A. A. & Sahm, H. (1998). Ammonia assimilation in Corynebacterium glutamicum and a glutamate dehydrogenase-deficient mutant. Biotechnol Lett 20, 953-957.[CrossRef] [Google Scholar]
  37. Tesch, M., de Graaf, A. A. & Sahm, H. (1999).In vivo fluxes in the ammonium-assimilatory pathways in Corynebacterium glutamicum studied by 15N nuclear magnetic resonance. Appl Environ Microbiol 65, 1099-1109. [Google Scholar]
  38. Tochikura, T., Sung, H.-C., Tachiki, T. & Kumagai, H. (1984). Occurrence of glutamate synthase in Brevibacterium flavum. Agric Biol Chem 48, 2149-2150.[CrossRef] [Google Scholar]
  39. Yanisch-Perron, C., Vieira, L. & Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of M13mp18 and pUC19 vectors. Gene 33, 103-119.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-11-2961
Loading
/content/journal/micro/10.1099/00221287-147-11-2961
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error