1887

Abstract

A cloned 2·5 kb DNA fragment that can restore antibiotic production and sporulation to a mutant encodes a 113 aa protein showing similarity to a family of anti-anti-sigma factors from and ; and the deduced product of a closely spaced downstream ORF, designated ORF3, shows similarity to cognate anti-sigma factors. The homologues in regulate the activity of sporulation- and stress-response-specific sigma factors. However, there is no sigma factor gene near and ORF3. is transcribed both as a monocistronic and a polycistronic mRNA, the latter including the downstream ORF3 gene. The two transcripts were present at all time points during growth and both were upregulated when aerial mycelium and pigmented antibiotics were seen. At all time points, the monocistronic transcript was two- to threefold more abundant than the polycistronic transcript. Mapping of the mRNA 5′ ends indicated that transcription is initiated from two transcription start sites located 82 and 123 bp upstream of the translation start. A constructed null mutant had the same phenotype as previously isolated point mutations, some of which were shown to have potentially significant base changes within . When compared to the wild-type strain, the null mutant showed no differences in the levels of transcription from the two promoters. These results suggest that is not involved in autoregulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-9-2161
2000-09-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/9/1462161a.html?itemId=/content/journal/micro/10.1099/00221287-146-9-2161&mimeType=html&fmt=ahah

References

  1. Benson A. K., Haldenwang W. G. 1993a; Bacillus subtilis sigma B is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase. Proc Natl Acad Sci USA 90:2330–2334 [CrossRef]
    [Google Scholar]
  2. Benson A. K., Haldenwang W. G. 1993b; Regulation of sigma B levels and activity in Bacillus subtilis. J Bacteriol 175:2347–2356
    [Google Scholar]
  3. Bibb M. J., Findlay P. R., Johnson M. W. 1984; The relationship between base composition and codon usage in bacterial genes and its use in the simple and reliable identification of protein coding sequences. Gene 30:157–166 [CrossRef]
    [Google Scholar]
  4. Bierman M., Logan R., O’Brien K., Seno E. T., Rao N., Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49 [CrossRef]
    [Google Scholar]
  5. Chakraburtty R., Bibb M. 1997; The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J Bacteriol 179:5854–5861
    [Google Scholar]
  6. Champness W. C. 1988; New loci required for Streptomyces coelicolor morphological and physiological differentiation. J Bacteriol 170:1168–1174
    [Google Scholar]
  7. Champness W. 2000; Actinomycete development, antibiotic production, and phylogeny: questions and challenges. In Prokaryotic Development pp. 11–32Edited by Brun Y. V., Shimkets L. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Chater K. F. 1998; Taking a genetic scalpel to the Streptomyces colony. Microbiology 144:1465–1478 [CrossRef]
    [Google Scholar]
  9. Chater K. F., Bruton C. J., King A. A., Suárez J. E. 1982; The expression of Streptomyces and Escherichia coli drug resistance determinants cloned into the Streptomyces phage øC31. Gene 19:21–32 [CrossRef]
    [Google Scholar]
  10. Decatur A. L., Losick R. 1996; Three sites of contact between the Bacillus subtilis transcription factor sigma F and its anti-sigma factor SpoIIAB. Genes Dev 10:2348–2358 [CrossRef]
    [Google Scholar]
  11. Deng Z. X., Kieser T., Hopwood D. A. 1987; Activity of a Streptomyces transcriptional terminator in Escherichia coli. Nucleic Acids Res 15:2665–2675 [CrossRef]
    [Google Scholar]
  12. Dufour A., Haldenwang W. G. 1994; Interactions between a Bacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV). J Bacteriol 176:1813–1820
    [Google Scholar]
  13. Duncan L., Losick R. 1993; SpoIIAB is an anti-sigma factor that binds to and inhibits transcription by regulatory protein sigma F from Bacillus subtilis. Proc Natl Acad Sci USA 90:2325–2329 [CrossRef]
    [Google Scholar]
  14. Duncan L., Alper S., Arigoni F., Losick R., Stragier P. 1995; Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science 270:641–644 [CrossRef]
    [Google Scholar]
  15. Duncan L., Alper S., Losick R. 1996; SpoIIAA governs the release of the cell-type specific transcription factor sigma F from its anti-sigma factor SpoIIAB. J Mol Biol 260:147–164 [CrossRef]
    [Google Scholar]
  16. Elliot M. A., Leskiw B. K. 1999; The BldD protein from Streptomyces coelicolor is a DNA-binding protein. J Bacteriol 181:6832–6835
    [Google Scholar]
  17. Elliot M., Damji F., Passantino R., Chater K., Leskiw B. 1998; The bldD gene of Streptomyces coelicolor A3(2): a regulatory gene involved in morphogenesis and antibiotic production. J Bacteriol 180:1549–1555
    [Google Scholar]
  18. Fernández-Moreno M. A., Caballero J. L., Hopwood D. A., Malpartida F. 1991; The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA transfer RNA gene of Streptomyces. Cell 66:769–780 [CrossRef]
    [Google Scholar]
  19. Garsin D. A., Paskowitz D. M., Duncan L., Losick R. 1998; Evidence for common sites of contact between the anti-sigma factor SpoIIAB and its partners SpoIIAA and the developmental transcription factor sigma F in Bacillus subtilis. J Mol Biol 284:557–568 [CrossRef]
    [Google Scholar]
  20. Giebelhaus L. A., Frost L., Lanka E., Gormley E. P., Davies J. E., Leskiw B. 1996; The Tra2 core of the IncP(alpha) plasmid RP4 is required for intergeneric mating between Escherichia coli and Streptomyces lividans. J Bacteriol 178:6378–6381
    [Google Scholar]
  21. Harasym M., Zhang L.-H., Chater K., Piret J. 1990; The Streptomyces coelicolor A3(2) bldB region contains at least two genes involved in morphological development. J Gen Microbiol 136:1543–1550 [CrossRef]
    [Google Scholar]
  22. Hartz D., McPheeters D. S., Traut R., Gold L. 1988; Extension-inhibition analysis of translation-initiation complexes. Methods Enzymol 164:419–425
    [Google Scholar]
  23. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359 [CrossRef]
    [Google Scholar]
  24. Hopwood D. A., Bibb M. J., Chater K. F.7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich, UK: John Innes Foundation;
    [Google Scholar]
  25. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T. 1987; Plasmid and phage vectors for gene cloning and analysis in Streptomyces. Methods Enzymol 153:116–166
    [Google Scholar]
  26. Ingham C. J., Hunter I. S., Smith M. C. 1995; Rho-independent terminators without 3′ poly-U tails from the early region of actinophage øC31. Nucleic Acids Res 23:370–376 [CrossRef]
    [Google Scholar]
  27. Kahn D., Ditta G. 1991; Modular structure of FixJ: homology of the transcriptional activator domain with the −35 binding domain of sigma factors. Mol Microbiol 5:987–997 [CrossRef]
    [Google Scholar]
  28. Kalman S., Duncan M. L., Thomas S. M., Price C. W. 1990; Similar organization of the sigB and spoIIA operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase. J Bacteriol 172:5575–5585
    [Google Scholar]
  29. Kang C. M., Brody M. S., Akbar S., Yang X., Price C. W. 1996; Homologous pairs of regulatory proteins control activity of Bacillus subtilis transcription factor sigma(b) in response to environmental stress. J Bacteriol 178:3846–3853
    [Google Scholar]
  30. Karandikar A., Sharples G. P., Hobbs G. 1997; Differentiation of Streptomyces coelicolor A(3)2 under nitrate-limited conditions. Microbiology 143:3581–3590 [CrossRef]
    [Google Scholar]
  31. Kelemen G. H., Buttner M. J. 1998; Initiation of aerial mycelium formation in Streptomyces. Curr Opin Microbiol 1:656–662 [CrossRef]
    [Google Scholar]
  32. Kelemen G. H., Brown G. L., Kormanec J., Potuckova L., Chater K. F., Buttner M. J. 1996; The positions of the sigma-factor genes whiG and sigF in the hierarchy controlling the development of spore chains in the aerial hyphae of Streptomyces coelicolor A3(2). Mol Microbiol 21:593–603 [CrossRef]
    [Google Scholar]
  33. Leskiw B. K., Lawlor E. J., Fernandez-Abalos J. M., Chater K. F. 1991; TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants. Proc Natl Acad Sci USA 88:2461–2465 [CrossRef]
    [Google Scholar]
  34. Leskiw B. K., Mah R., Lawlor E. J., Chater K. F. 1993; Accumulation of bldA-specified tRNA is temporally regulated in Streptomyces coelicolor A3(2). J Bacteriol 175:1995–2005
    [Google Scholar]
  35. Lonetto M., Gribskov M., Gross C. A. 1992; The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol 174:3843–3849
    [Google Scholar]
  36. Ma H., Kendall K. 1994; Cloning and analysis of a gene cluster from Streptomyces coelicolor that causes accelerated aerial mycelium formation in Streptomyces lividans. J Bacteriol 176:3800–3811
    [Google Scholar]
  37. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68 [CrossRef]
    [Google Scholar]
  38. Magnin T., Lord M., Yudkin M. D. 1997; Contribution of partner switching and SpoIIAA cycling to regulation of sigma F activity in sporulating Bacillus subtilis. J Bacteriol 179:3922–3927
    [Google Scholar]
  39. Méndez C., Chater K. F. 1987; Cloning of whiG, a gene critical for sporulation of Streptomyces coelicolor A3(2). J Bacteriol 169:5715–5720
    [Google Scholar]
  40. Min K. T., Hilditch C. M., Diederich B., Errington J., Yudkin M. D. 1993; Sigma F, the first compartment-specific transcription factor of B. subtilis, is regulated by an anti-sigma factor that is also a protein kinase. Cell 74:735–742 [CrossRef]
    [Google Scholar]
  41. Najafi S. M., Willis A. C., Yudkin M. D. 1995; Site of phosphorylation of SpoIIAA, the anti-anti-sigma factor for sporulation-specific sigma F of Bacillus subtilis. J Bacteriol 177:2912–2913
    [Google Scholar]
  42. Nodwell J. R., Losick R. 1998; Purification of an extracellular signaling molecule involved in production of aerial mycelium by Streptomyces coelicolor. J Bacteriol 180:1334–1337
    [Google Scholar]
  43. Nodwell J. R., McGovern K., Losick R. 1996; An oligopeptide permease responsible for the import of an extracellular signal governing aerial mycelium formation in Streptomyces coelicolor. Mol Microbiol 22:881–893 [CrossRef]
    [Google Scholar]
  44. Nodwell J. R., Yang M., Kuo D., Losick R. 1999; Extracellular complementation and the identification of additional genes involved in aerial mycelium formation in Streptomyces coelicolor. Genetics 151:569–584
    [Google Scholar]
  45. Pope M. K., Green B. D., Westpheling J. 1996; The bld mutants of Streptomyces coelicolor are defective in the regulation of carbon utilization, morphogenesis and cell–cell signalling. Mol Microbiol 19:747–756 [CrossRef]
    [Google Scholar]
  46. Pope M. K., Green B., Westpheling J. 1998; The bldB gene encodes a small protein required for morphogenesis, antibiotic production, and catabolite control in Streptomyces coelicolor. J Bacteriol 180:1556–1562
    [Google Scholar]
  47. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D. A. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96 [CrossRef]
    [Google Scholar]
  48. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  49. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  50. Schuch R., Piggot P. J. 1994; The dacF–spoIIA operon of Bacillus subtilis, encoding sigma F, is autoregulated. J Bacteriol 176:4104–4110
    [Google Scholar]
  51. Stock J. R., Surette M. G., Levitt M., Park P. 1995; Two-component signal transduction systems: structure–function relationships and mechanisms of catalysis. In Two-Component Signal Transduction pp. 25–51Edited by Hoch J., Silhavy T. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  52. Strohl W. R. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20:961–974 [CrossRef]
    [Google Scholar]
  53. Susstrunk U., Pidoux J., Taubert S., Ullmann A., Thompson C. J. 1998; Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor. Mol Microbiol 30:33–46 [CrossRef]
    [Google Scholar]
  54. Voelker U., Voelker A., Maul B., Hecker M., Dufour A., Haldenwang W. G. 1995; Separate mechanisms activate sigma B of Bacillus subtilis in response to environmental and metabolic stresses. J Bacteriol 177:3771–3780
    [Google Scholar]
  55. White J., Bibb M. 1997; bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J Bacteriol 179:627–633
    [Google Scholar]
  56. Willey J., Santamarı́a R., Guijarro J., Geistlich M., Losick R. 1991; Extracellular complementation of a developmental mutation implicates a small sporulation protein in aerial mycelium formation. Cell 65:641–650 [CrossRef]
    [Google Scholar]
  57. Willey J., Schwedock J., Losick R. 1993; Multiple extracellular signals govern the production of a morphogenetic protein involved in aerial mycelium formation by Streptomyces coelicolor. Genes Dev 7:895–903 [CrossRef]
    [Google Scholar]
  58. Williams J. G., Mason P. J. 1985 Hybridization in the Analysis of RNA Oxford: IRL Press;
    [Google Scholar]
  59. Wise A. A., Price C. W. 1995; Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals. J Bacteriol 177:123–133
    [Google Scholar]
  60. Wu J. J., Piggot P. J., Tatti K. M., Moran C. P. Jr 1991; Transcription of the Bacillus subtilis spoIIA locus. Gene 101:113–116 [CrossRef]
    [Google Scholar]
  61. Wu S., de Lencastre H., Tomasz A. 1996; Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase: molecular cloning and DNA sequencing. J Bacteriol 178:6036–6042
    [Google Scholar]
  62. Wu L. J., Feucht A., Errington J. 1998; Prespore-specific gene expression in Bacillus subtilis is driven by sequestration of SpoIIE phosphatase to the prespore side of the asymmetric septum. Genes Dev 12:1371–1380 [CrossRef]
    [Google Scholar]
  63. Zhen L., Swank R. T. 1993; A simple and high yield method for recovering DNA from agarose gels. Biotechniques 14:894–898
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-9-2161
Loading
/content/journal/micro/10.1099/00221287-146-9-2161
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error