1887

Abstract

Era, an essential GTPase, appears to play an important role in the regulation of the cell cycle and protein synthesis of bacteria and mycoplasmas. In this study, native Era, His-tagged Era (His–Era) and glutathione -transferase (GST)-fusion Era (GST–Era) proteins from were expressed and purified. It was shown that the GST–Era and His–Era proteins purified by 1-step affinity column chromatographic methods were associated with RNA and exhibited a higher GTPase activity. However, the native Era protein purified by a 3-step column chromatographic method had a much lower GTPase activity and was not associated with RNA which had been removed during purification. Purified GST–Era protein was shown to be present as a high- and a low-molecular-mass forms. The high-molecular-mass form of GST–Era was associated with RNA and exhibited a much higher GTPase activity. Removal of the RNA associated with GST–Era resulted in a significant reduction in the GTPase activity. The RNA associated with GST–Era was shown to be primarily 16S rRNA. A purified native Era protein preparation, when mixed with total cellular RNA, was found to bind to some of the RNA. The native Era protein isolated directly from the cells of a wild-type strain was also present as a high-molecular-mass form complexed with RNA and RNase treatment converted the high-molecular-mass form into a 32 kDa low-molecular-mass form, a monomer of Era. Furthermore, a C-terminally truncated Era protein, when expressed in , did not bind RNA. Finally, the GTPase activity of the Era protein free of RNA, but not the Era protein associated with the RNA, was stimulated by acetate and3-phosphoglycerate. These carbohydrates, however, failed to activate the GTPase activity of the C-terminally truncated Era protein. Thus, the results of this study establish that the C-terminus of Era is essential for the RNA-binding activity and that the RNA and carbohydrates modulate the GTPase activity of Era possibly through a similar mechanism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-5-1071
2000-05-01
2020-07-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/5/1461071a.html?itemId=/content/journal/micro/10.1099/00221287-146-5-1071&mimeType=html&fmt=ahah

References

  1. Ahnn J., March P. E., Takiff H. E., Inouye M.. 1986; A GTP-binding protein of Escherichia coli has homology to yeast RAS proteins. Proc Natl Acad Sci USA83:8849–8853[CrossRef]
    [Google Scholar]
  2. Barbacid M.. 1987; Ras genes. Annu Rev Biochem56:779–827[CrossRef]
    [Google Scholar]
  3. Bourne H. R., Sanders D. A., McCormick F.. 1990; The GTPase superfamily: a conserved switch for diverse cell functions. Nature348:125–132[CrossRef]
    [Google Scholar]
  4. Bourne H. R., Sanders D. A., McCormick F.. 1991; The GTPase superfamily: conserved structure and molecular mechanism. Nature349:117–127[CrossRef]
    [Google Scholar]
  5. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  6. Britton R. A., Powell B. S., Court D. L., Lupski J. R.. 1997; Characterization of mutations affecting the Escherichia coli essential GTPase Era that suppress two temperature-sensitive dnaG alleles. J Bacteriol179:4575–4582
    [Google Scholar]
  7. Britton R. A., Powell B. S., Dasgupta S., Sun Q., Margolin W., Lupski J. R., Court D. L.. 1998; Cell cycle arrest in Era GTPase mutants: a potential growth rate-regulated checkpoint in Escherichia coli. Mol Microbiol27:739–750[CrossRef]
    [Google Scholar]
  8. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. 1978; Complete nucleotide sequences of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA75:4801–4805[CrossRef]
    [Google Scholar]
  9. Brosius J., Dull T. J., Noller H. F.. 1980; Complete nucleotide sequences of a 23S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA77:201–204[CrossRef]
    [Google Scholar]
  10. Chen S.-M., Takiff H. E., Barber A. H., Dubois G. C., Bardwell J. C. A., Court D. L.. 1990; Expression and characterization of RNaseIII and Era proteins: products of the rnc operon of Escherichia coli. J Biol Chem265:2888–2895
    [Google Scholar]
  11. Chen X., Court D. L., Ji X.. 1999; Crystal structure of ERA: a GTPase-dependent cell cycle regulator containing an RNA binding motif. Proc Natl Acad Sci USA96:8396–8401[CrossRef]
    [Google Scholar]
  12. Drueckes P., Schinzel R.. 1996; Activation of E350A mutant maltodextrin phosphorylase by exogenously added acetate. Protein Eng9:701–705[CrossRef]
    [Google Scholar]
  13. Fleischmann R. D., Adams M. D., White O..37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science269:496–512[CrossRef]
    [Google Scholar]
  14. Fraenkel D. G.. 1996; Glycolysis. In Escherichia coli and Salmonella Cellular and Molecular Biology, 2nd edn. pp.189–198Edited by Neidhardt F. C., Curtiss R. III, Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Fraser C. M., Gocayne J. D., White O..26 other authors 1995; The minimal gene complement of Mycoplasma genitalium. Science270:397–403[CrossRef]
    [Google Scholar]
  16. Gollop N., March P. E.. 1991a; Localization of the membrane binding sites of Era in Escherichia coli. Res Microbiol142:301–307[CrossRef]
    [Google Scholar]
  17. Gollop N., March P. E.. 1991b; A GTP-binding protein (Era) has an essential role in growth rate and cell cycle control in Escherichia coli. J Bacteriol173:2265–2270
    [Google Scholar]
  18. Holms H.. 1996; Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol Rev19:85–116[CrossRef]
    [Google Scholar]
  19. Inada T., Kawakami K., Chen S., Takiff H. E., Court D. L., Nakamura Y.. 1989; Temperature-sensitive lethal mutant of Era, a G protein in Escherichia coli. J Bacteriol171:5017–5024
    [Google Scholar]
  20. Ingram G. C., Simon R., Carpenter R., Coen E. S.. 1998; The Antirrhinum ERG gene encodes a protein related to bacterial small GTPases and is required for embryonic viability. Curr Biol8:1079–1082[CrossRef]
    [Google Scholar]
  21. Johnstone B. H., Handler A. A., Chao D. K., Nguyen V., Smith M., Ryu S. Y., Simons E. L., Anderson P. E., Simons R. E.. 1999; The widely conserved Era G-protein contains an RNA-binding domain required for Era function in vivo. Mol Microbiol33:1118–1131
    [Google Scholar]
  22. Kawabata S., Terao Y., Andoh T., Hamada S.. 1997; Nucleotide sequence and molecular characterization of a gene encoding GTP-binding protein from Streptococcus gordonii. FEMS Microbiol Lett156:211–216[CrossRef]
    [Google Scholar]
  23. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  24. Lerner C. G., Inouye M.. 1991; Pleiotropic changes resulting from depletion of Era, an essential GTP-binding protein in Escherichia coli. Mol Microbiol5:951–957[CrossRef]
    [Google Scholar]
  25. Lerner C. G., Sood P., Ahnn J., Inouye M.. 1992; Cold-sensitive growth and decreased GTP-hydrolytic activity from substitution of Pro17 for Val in Era, an essential Escherichia coli GTPase. FEMS Microbiol Lett95:137–142[CrossRef]
    [Google Scholar]
  26. Lerner C. G., Gulati P. S., Inouye M.. 1995; Cold-sensitive conditional mutations in Era, an essential Escherichia coli GTPase, isolated by localized random polymerase chain reaction mutagenesis. FEMS Microbiol Lett126:291–298[CrossRef]
    [Google Scholar]
  27. Lin Y. P., Sharer J. D., March P. E.. 1994; GTPase-dependent signaling in bacteria: characterization of a membrane-binding site for Era in Escherichia coli. J Bacteriol176:44–49
    [Google Scholar]
  28. March P. E.. 1992; Membrane associated GTPases in bacteria. Mol Microbiol6:1253–1257[CrossRef]
    [Google Scholar]
  29. March P. E., Lerner C. G., Ahnn J., Cui X., Inouye M.. 1988; The Escherichia coli Ras-like protein (Era) has GTPase activity and is essential for cell growth. Oncogene2:539–544
    [Google Scholar]
  30. Meier T. I., Peery R. B., Jaskunas S. R., Zhao G.. 1999; 16S ribosomal RNA is bound to Era of Streptococcus pneumoniae. J Bacteriol181:5242–5249
    [Google Scholar]
  31. Nashimoto H.. 1993; Non-ribosomal proteins affecting the assembly of ribosomes in Escherichia coli. In The Translational Apparatus pp.185–195Edited by Nierhaus H. K., Franceschi F., Subramanian A. R., Erdmann V. A., Wittmann-Liebold B.. New York: Plenum;
    [Google Scholar]
  32. Nashimoto H., Uchida H.. 1985; DNA sequencing of the Escherichia coli ribonuclease III gene and its mutations. Mol Gen Genet201:25–29[CrossRef]
    [Google Scholar]
  33. Nashimoto H., Miura A., Saito H., Uchida H.. 1985; Suppressors of temperature-sensitive mutations in a ribosomal protein gene, rpsL (S12), of Escherichia coli. Mol Gen Genet199:381–387[CrossRef]
    [Google Scholar]
  34. Pillutla C. R., Sharer J. D., Gulati P. S., Wu E., Yamashita Y., Lerner C. G., Inouye M., March P. E.. 1995; Cross-species complementation of the indispensable Escherichia coli era gene highlights amino acid regions essential for activity. J Bacteriol177:2194–2196
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Sato T., Wu J., Kuramitsu H.. 1998; The sgp gene modulates responses of Streptococcus mutans: utilization of an antisense RNA strategy to investigate essential gene functions. FEMS Microbiol Lett159:241–245[CrossRef]
    [Google Scholar]
  37. Shimamoto T., Inouye M.. 1996; Mutational analysis of Era, an essential GTP-binding protein of Escherichia coli. FEMS Microbiol Lett136:57–62[CrossRef]
    [Google Scholar]
  38. Siomi H., Matunis M. J., Michael W. M., Dreyfuss G.. 1993; The pre-mRNA binding K-protein contains a novel evolutionarily conserved motif. Nucleic Acids Res21:1193–1198[CrossRef]
    [Google Scholar]
  39. Takiff H. E., Chen S.-M., Court D. L.. 1989; Genetic analysis of the rnc operon of Escherichia coli. J Bacteriol171:2581–2590
    [Google Scholar]
  40. Wu J., Cho M.-I., Kuramitsu H. K.. 1995; Expression, purification, and characterization of a novel G protein, SGP, from Streptococcus mutans. Infect Immun63:2516–2521
    [Google Scholar]
  41. Yamashita Y., Takehara T., Huramitsu H. K.. 1993; Molecular characterization of a Streptococcus mutans mutant altered in environmental stress responses. J Bacteriol175:6220–6228
    [Google Scholar]
  42. Zhao G., Winkler M. E.. 1995; Kinetic limitation and cellular amount of pyridoxine 5′-phosphate oxidase of Escherichia coli K-12. J Bacteriol177:883–891
    [Google Scholar]
  43. Zhao G., Meier T. I., Peery R. B., Skatrud P. L.. 1999; Biochemical and molecular analyses of the C-terminal domain of Era GTPase from Streptococcus pneumoniae. Microbiology145:791–800[CrossRef]
    [Google Scholar]
  44. Zuber M., Hoover T. A., Powell B. S., Court D. L.. 1990; Analysis of the rnc locus of Coxiella burnetii. Mol Microbiol14:291–300
    [Google Scholar]
  45. Zuber M., Hoover T. A., Dertzbaugh M. T., Court D. L.. 1997; A Francisella tularensis DNA clone complements Escherichia coli defective for the production of Era, an essential Ras-like GTP-binding protein. Gene189:31–34[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-5-1071
Loading
/content/journal/micro/10.1099/00221287-146-5-1071
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error