1887

Abstract

Within the framework of the international project ‘The functional analysis of the genome’ in Japan and Europe, the gene expression and transcription organization of the region (160 kb) of the genome has been systematically analysed. First, all unanalysed genes comprising more than 80 amino acids (125 genes) in this region were inactivated through integration of plasmid pMUTIN. No essential gene was found which could not be inactivated. All the integrants grew normally in both nutrient sporulation medium and glucose minimal medium. But an integrant in the gene exhibited an oligosporogenic phenotype in the nutrient sporulation medium. The synthesis of β-galactosidase was examined, as a reporter for expression of the inactivated genes, during growth and sporulation in the two media. The results indicated that 36% of the promoters were inactive when cells were grown in at least one of these two media. Furthermore, the transcription of the 119 genes in this region was analysed by Northern blotting, resulting in a transcription map. The results indicate that the region contains at least 24 polycistronic operons, including several published ones. The operons newly found in this work are , , , , , , , , , , , , , , , , and

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-3-573
2000-03-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/3/1460573a.html?itemId=/content/journal/micro/10.1099/00221287-146-3-573&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J.. 1961; Requirements for transformation in Bacillus subtilis. J Bacteriol81:741–746
    [Google Scholar]
  2. Atkinson M. R., Wray L. V. Jr, Fisher S. H.. 1990; Regulation of histidine and proline degradation enzymes by amino acid availability in Bacillus subtilis. J Bacteriol172:4758–4765
    [Google Scholar]
  3. Engelmann S., Lindner C., Hecker M.. 1995; Cloning, nucleotide sequence, and regulation of katE encoding a σB-dependent catalase in Bacillus subtilis. J Bacteriol177:5598–5605
    [Google Scholar]
  4. Fujita Y., Freese E.. 1981; Isolation and properties of a Bacillus subtilis mutant unable to produce fructose bisphosphatase. J Bacteriol145:760–767
    [Google Scholar]
  5. Fujita Y., Fujita T.. 1983; Genetic analysis of a pleiotropic deletion mutation (Δigf) in Bacillus subtilis. J Bacteriol154:864–869
    [Google Scholar]
  6. Fujita Y., Fujita T., Miwa Y., Nihashi J., Aratani Y.. 1986; Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. J Biol Chem261:13744–13753
    [Google Scholar]
  7. Fujita Y., Yoshida K., Miwa Y., Yanai N., Nagakawa E., Kasahara Y.. 1998; Identification and expression of the Bacillus subtilis fructose-1,6-bisphosphatase gene (fbp). J Bacteriol180:4309–4313
    [Google Scholar]
  8. Goffeau A., Aert R., Agostini-Carbone M. L..630 other authors 1997; The yeast genome directory. Nature387:(suppl.)5–105
    [Google Scholar]
  9. Kunst F., Ogasawara N., Moszer I..148 other authors 1997; The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature390:249–256
    [Google Scholar]
  10. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  11. Schaeffer P., Millet J., Aubert J. P.. 1965; Catabolite repression of bacterial sporulation. Proc Natl Acad Sci USA54:704–711[CrossRef]
    [Google Scholar]
  12. Schnetz K., Stülke J., Gerty S., Krüger S., Krieg M., Hecker M., Rak B.. 1996; LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol178:1971–1979
    [Google Scholar]
  13. Schulz A., Schwab S., Homuth G., Versteeg S., Schumann W.. 1997; The htpG gene of Bacillus subtilis belongs to class III heat shock genes and is under negative control. J Bacteriol179:3103–3109
    [Google Scholar]
  14. Tobisch S., Glaser P., Krüger S., Hecker M.. 1997; Identification and characterization of a new β-glucoside utilization system in Bacillus subtilis. J Bacteriol179:496–506
    [Google Scholar]
  15. Vagner V., Dervyn E., Ehrlich S. D.. 1998; A vector for systematic gene inactivation in Bacillus subtilis. Microbiology144:3097–3104[CrossRef]
    [Google Scholar]
  16. Winstedt L., Yoshida K., Fujita Y., von Wachenfeldt C.. 1998; Cytochrome bd biosynthesis in Bacillus subtilis: characterization of the cydABCD operon. J Bacteriol180:6571–6580
    [Google Scholar]
  17. Winzeler E. A., Shoemaker D. D., Astromoff A..49 other authors 1999; Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science285:901–906[CrossRef]
    [Google Scholar]
  18. Yoshida K., Shindo K., Sano H., Seki S., Fujimura M., Yanai N., Miwa Y., Fujita Y.. 1996; Sequencing of a 65 kb region of the Bacillus subtilis genome containing the lic and cel loci, and creation of a 177 kb contig covering the gntsacXY region. Microbiology142:3113–3123[CrossRef]
    [Google Scholar]
  19. Yoshida K., Aoyama D., Ishio I., Shibayama T., Fujita Y.. 1997; Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis. J Bacteriol179:4591–4598
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-3-573
Loading
/content/journal/micro/10.1099/00221287-146-3-573
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error