1887

Abstract

Four adjacent genes (, , and ) encoding different type I signal peptidases, were isolated on a 7860 bp DNA fragment from TK21. Three of the genes constitute an operon and the fourth is the first gene of another operon encompassing three additional, unrelated genes. A DNA fragment containing the four genes complemented an type I signal peptidase mutant when cloned in a multicopy plasmid. Clustering of four different type I signal peptidase genes seems, so far, to be a unique feature of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2255
1999-09-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452255a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2255&mimeType=html&fmt=ahah

References

  1. Anné J., van Mellaert L. 1993; Streptomyces lividans as host for heterologous protein production. FEMS Microbiol Lett 114:121–128 [CrossRef]
    [Google Scholar]
  2. Black M. T. 1993; Evidence that the catalytic activity of prokaryotic leader peptidase depends upon the operation of a serine-lysine catalytic dyad. J Bacteriol 175:4957–4961
    [Google Scholar]
  3. Blattner F. R., Plunkett G. III, Bloch C. A.14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474 [CrossRef]
    [Google Scholar]
  4. Brawner M., Poste G., Rosenberg M., Westpheling J. 1991; Streptomyces: a host for heterologous gene expression. Curr Opin Biotechnol 2:674–681 [CrossRef]
    [Google Scholar]
  5. Cam K., Rome G., Krisch H. M., Bouché J.-P. 1996; RNase E processing of essential cell division genes mRNA in Escherichia coli.. Nucleic Acids Res 24:3065–3070 [CrossRef]
    [Google Scholar]
  6. Cregg K. M., Wilding E. I., Black M. T. 1996; Molecular cloning and expression of the spsB gene encoding an essential type I SPase from Staphylococcus aureus.. J Bacteriol 178:5712–5718
    [Google Scholar]
  7. Dalbey R. E., von Heijne G. 1992; SPases in prokaryotes and eukaryotes – a new protease family. Trends Biochem Sci 17:474–478 [CrossRef]
    [Google Scholar]
  8. Dalbey R. E., Lively M. O., Bron S., van Dijl J. M. 1997; The chemistry and enzymology of the type I SPases. Protein Sci 6:1129–1138 [CrossRef]
    [Google Scholar]
  9. van Dijl J. M., de Jong A., Vehmaanperä J, Venema G., Bron S. 1992; SPase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I SPases. EMBO J 11:2819–2828
    [Google Scholar]
  10. van Dijl J. M., de Jong A, Venema G., Bron S. 1995; Identification of the potential active site of the SPase SipS of Bacillus subtilis: structural and functional similarities with LexA-like proteases. J Biol Chem 270:3611–3618 [CrossRef]
    [Google Scholar]
  11. Driessen A. J. M. 1994; How proteins cross the bacterial cytoplasmic membrane. J Membr Biol 142:145–159
    [Google Scholar]
  12. Flärdh K, Garrido T., Vicente M. 1997; Contribution of individual promoters in the ddlB–ftsZ region to the transcription of the essential cell-division gene ftsZ in Escherichia coli.. Mol Microbiol 24:927–936 [CrossRef]
    [Google Scholar]
  13. Gilbert M., Morosoli R., Shareck F., Kluepfel D. 1995; Production and secretion of proteins by streptomycetes. Crit Rev Biotechnol 15:13–39 [CrossRef]
    [Google Scholar]
  14. von Heijne G. 1990; The signal peptide. J Membr Biol 115:195–201 [CrossRef]
    [Google Scholar]
  15. von Heijne G. 1992; Membrane protein structure prediction hydrophobicity analysis and the positive-inside rule. J Mol Biol 252:487–494
    [Google Scholar]
  16. Hoang V., Hofemeister J. 1995; Bacillus amyloliquefaciens possesses a second type I SPase with extensive sequence similarity to other Bacillus SPases. Biochim Biophys Acta 1269:64–68 [CrossRef]
    [Google Scholar]
  17. Hopwood D. A., Bibb M. J., Chater K. F.7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual. Norwich: John Innes Foundation;
    [Google Scholar]
  18. Inada T., Court D. L., Ito K., Nakamura Y. 1989; Conditionally lethal amber mutations in the leader peptidase gene of Escherichia coli.. J Bacteriol 171:585–587
    [Google Scholar]
  19. Kunst F., Ogasawara N., Moszer I.148 other authors 1997; The complete genome sequence of the gram-positive bacterium. Bacillus subtilis. Nature 390:249–256 [CrossRef]
    [Google Scholar]
  20. McDowall K. J., Lin-Chao S., Cohen S. N. 1994; A+U content rather than a particular nucleotide order determines the specificity of RNase E cleavage. J Biol Chem 269:10790–10796
    [Google Scholar]
  21. Maxam A. M., Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560
    [Google Scholar]
  22. Meijer W. J. J., de Jong A., Wisman G. B. A., Tjalsma H., Venema G, Bron S., van Dijl J. M. 1995; The endogenous Bacillus subtilis (natto) plasmids pTA1015 and pTA1040 contain SPase-encoding genes: identification of a new structural module of cryptic plasmids. Mol Microbiol 17:621–631 [CrossRef]
    [Google Scholar]
  23. Murray N. E. 1983; Phage lambda and molecular cloning. In Lambda II pp 398–432Edited by Hendrix R. W., Roberts J. W., Stahl F. W., Weisberg R. A. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Osawa T., Yura T. 1980; Amber mutations in the structural gene for RNA polymerase sigma factor of Escherichia coli.. Mol Gen Genet 180:293–300 [CrossRef]
    [Google Scholar]
  25. Parro V., Mellado R. P. 1993; Heterologous recognition in vivo of promoter sequences from Streptomyces coelicolor dagA gene. FEMS Microbiol Lett 106:347–356 [CrossRef]
    [Google Scholar]
  26. Parro V., Mellado R. P. 1998; A new signal peptidase gene from Streptomyces lividans TK21. DNA Sequence 9:71–77
    [Google Scholar]
  27. Parro V., Hopwood D. A., Malpartida F., Mellado R. P. 1991; Transcription of genes involved in the earliest steps of actinorhodin biosynthesis in Streptomyces coelicolor.. Nucleic Acids Res 19:2623–2627 [CrossRef]
    [Google Scholar]
  28. Parro V., Vives C., Godia F., Mellado R. P. 1997; Overproduction and purification of an agarase of bacterial origin. J Biotechnol 58:59–66 [CrossRef]
    [Google Scholar]
  29. Parro V., Mellado R. P., Harwood C. R. 1998; Effect of phosphate limitation on agarase production by Streptomyces lividans TK21. FEMS Microbiol Lett 158:107–113
    [Google Scholar]
  30. Pugsley A. P. 1993; The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev 57:50–108
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  33. Schacht S., van Mellaert, L., Lammertyn, H., Tjalsma, H., van Dijl J. M., Bron S. & Anné, J. 1998; The sip(sli) gene of Streptomyces lividans TK24 specifies an unusual signal peptidase with a putative C-terminal transmembrane anchor. DNA Seq 9:79–88
    [Google Scholar]
  34. Sipos L., von Heijne G. 1993; Predicting the topology of eukaryotic membrane proteins. Eur J Biochem 213:1333–1340 [CrossRef]
    [Google Scholar]
  35. Sprengart M. L., Fuchs E., Porter A. G. 1996; The downstream box: an efficient and independent translation initiation signal in Escherichia coli.. EMBO J 15:665–674
    [Google Scholar]
  36. Tjalsma H., Noback M. A., Bron S., Venema G., Yamane K., van Dijl J. M. 1997; Bacillus subtilis contains four related type I SPases with overlapping substrate specificities. J Biol Chem 272:25983–25992 [CrossRef]
    [Google Scholar]
  37. Tjalsma H., Bolhuis A., van Roosmalen M. L.7 other authors 1998; Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic SPases. Genes Dev 12:2318–2331 [CrossRef]
    [Google Scholar]
  38. Tschantz W. R., Sung M., Delgado-Partin V. M., Dalbey R. 1993; A serine and a lysine residue implicated in the catalytic mechanisms of the Escherichia coli leader peptidase. J Biol Chem 268:27349–27354
    [Google Scholar]
  39. Ward J. M., Janssen G. R., Kieser T., Bibb M. J., Buttner M. J., Bibb M. J. 1986; Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet 203:468–478 [CrossRef]
    [Google Scholar]
  40. Wehmeier U. F. 1995; New multifunctional Escherichia coliStreptomyces shuttle vectors allow blue–white screening on XGal plates. Gene 165:149–150 [CrossRef]
    [Google Scholar]
  41. Wickner W., Driessen A. J. M., Hartl F. U. 1991; The enzymology of protein translocation across the Escherichia coli plasma membrane. Annu Rev Biochem 60:101–124 [CrossRef]
    [Google Scholar]
  42. Wright F., Bibb M. J. 1992; Codon usage in the G+C-rich Streptomyces genome. Gene 113:55–65 [CrossRef]
    [Google Scholar]
  43. Wu C.-J., Janssen G. R. 1996; Translation of vph mRNA in Streptomyces lividans and Escherichia coli after removal of the 5′ untranslated leader. Mol Microbiol 22:339–355 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2255
Loading
/content/journal/micro/10.1099/00221287-145-9-2255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error