1887
Preview this article:
Zoom in
Zoomout

Retrotransfer or gene capture: a feature of conjugative plasmids, with ecological and evolutionary significance, Page 1 of 1

| /docserver/preview/fulltext/micro/145/12/1453321a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-12-3321
1999-12-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/12/1453321a.html?itemId=/content/journal/micro/10.1099/00221287-145-12-3321&mimeType=html&fmt=ahah

References

  1. Althorpe N., Chilley P., Thomas T., Brammar W., Wilkins B.. 1999; Transient transcriptional activation of the IncI1 plasmid anti-restriction gene (ardA) and SOS inhibition gene (psiB) early in conjugating recipient bacteria. Mol Microbiol31:133–142[CrossRef]
    [Google Scholar]
  2. Ankenbauer R. G.. 1997; Reassessing forty years of genetic doctrine: retrotransfer and conjugation. Genetics145:543–549
    [Google Scholar]
  3. Bagdasarian M., Lurz R., Ruckert B., Franklin F. C., Bagdasarian M. M., Frey J., Timmis K. N.. 1981; Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host vector system for gene cloning in Pseudomonas. Gene16:237–247[CrossRef]
    [Google Scholar]
  4. Bagdasarian M., Bailone A., Angulo J. F., Scholz P., Bagdasarian M. M., Devoret R.. 1992; PsiB, an anti-SOS protein, is transiently expressed by the F sex factor during its transmission to an Escherichia coli K-12 recipient. Mol Microbiol6:885–893[CrossRef]
    [Google Scholar]
  5. Bailone A., Bäckman A., Sommer S., Célérier J., Bagdasarian M. M., Bagdasarian M., Devoret R.. 1988; PsiB polypeptide prevents activation of RecA protein in Escherichia coli. Mol Gen Genet214:389–395[CrossRef]
    [Google Scholar]
  6. Bale M. J., Day M. J., Fry J. C.. 1988; Novel method for studying plasmid transfer in undisturbed river epilithon. Appl Environ Microbiol54:2756–2458
    [Google Scholar]
  7. Bates S., Cashmore A. M., Wilkins B.. 1998; IncP plasmids are unusually effective in mediating conjugation of Escherichia coli and Saccharomyces cerevisiae: involvement of the Tra2 mating system. J Bacteriol180:6538–6543
    [Google Scholar]
  8. Bauda P., Lallement C., Manem J.. 1995; Plasmid content evaluation of activated sludge. Water Res29:371–374[CrossRef]
    [Google Scholar]
  9. Belogurov A. A., Delver E. P., Rodzevich O. V.. 1993; Plasmid pKM101 encodes two nonhomologous antirestriction proteins (ArdA and ArdB) whose expression is controlled by homologous regulatory sequences. J Bacteriol175:4843–4850
    [Google Scholar]
  10. Blanco G., Ramos F., Medina J. R., Guttierez J. C., Tortolero M.. 1991; Conjugal retrotransfer of chromosomal markers in Azotobacter vinelandii. Curr Microbiol22:241–246[CrossRef]
    [Google Scholar]
  11. Chilley P., Wilkins B.. 1995; Distribution of the ardA family antirestriction genes on conjugative plasmids. Microbiology141:2157–2164[CrossRef]
    [Google Scholar]
  12. Collard J. M., Corbisier P, Diels L..7 other authors 1994; Plasmids for heavy metal resistance in Alcaligenes eutrophus CH34: mechanisms and applications. FEMS Microbiol Rev14:405–414[CrossRef]
    [Google Scholar]
  13. Delver E., Kotova V., Zavilgelsky G., Belogurov A.. 1991; Nucleotide sequence of the gene (ard) encoding the antirestriction protein of plasmid ColIb-P9. J Bacteriol173:5887–5892
    [Google Scholar]
  14. De Rore H., Demolder K., De Wilde K., Top E., Houwen F., Verstraete W.. 1994a; Transfer of the catabolic plasmid RP4::Tn4371 to indigenous soil bacteria and its effect on respiration and biphenyl breakdown. FEMS Microbiol Ecol15:71–81[CrossRef]
    [Google Scholar]
  15. De Rore H., Top E., Houwen F., Mergeay M., Verstraete W.. 1994b; Evolution of heavy metal resistant transconjugants in a soil environment with a concomitant selective pressure. FEMS Microbiol Ecol14:263–274[CrossRef]
    [Google Scholar]
  16. Diels L., Faelen M., Mergeay M., Nies D.. 1985; Mercury transposons from plasmids governing multiple resistance to heavy metals in Alcaligenes eutrophus CH34. Arch Intern Physiol Bioch93:B27–B28[CrossRef]
    [Google Scholar]
  17. Drønen A. K., Torsvik V., Goksøyr J., Top E.. 1998; Effect of mercury addition on plasmid incidence and gene mobilizing capacity in soils. FEMS Microbiol Ecol27:381–394[CrossRef]
    [Google Scholar]
  18. Drønen A. K., Torsvik V., Top E.. 1999; Comparison of the plasmid types obtained by two distantly related recipients in biparental exogenous plasmid isolations from soil. FEMS Microbiol Lett176:105–110[CrossRef]
    [Google Scholar]
  19. van Elsas J. D., Gardener B. B., Wolters A. C., Smit E.. 1998; Isolation, characterization, and transfer of cryptic gene-mobilizing plasmids in the wheat rhizosphere. Appl Environ Microbiol64:880–889
    [Google Scholar]
  20. Figurski D., Helinski D.. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA76:1648–1652[CrossRef]
    [Google Scholar]
  21. Fujita M., Ike M., Suzuki H.. 1993; Screening of plasmids from wastewater bacteria. Water Res27:949–953[CrossRef]
    [Google Scholar]
  22. Fulthorpe R. R., Wyndham R. C.. 1992; Involvement of chlorobenzoate-catabolic transposon, Tn5271, in community adaptation to chlorobiphenyl, chloroaniline and 2,4-dichlorophenoxyacetic acid in a fresh water ecosystem. Appl Environ Microbiol59:843–850
    [Google Scholar]
  23. Golub E., Bailone A., Devoret R.. 1988; A gene encoding an SOS inhibitor is present in different conjugative plasmids. J Bacteriol170:4392–4394
    [Google Scholar]
  24. Heinemann J. A., Ankenbauer R. G.. 1993a; Retrotransfer in Escherichia coli conjugation: bidirectional exchange or de novo mating?. J Bacteriol175:583–588
    [Google Scholar]
  25. Heinemann J. A., Ankenbauer R. G.. 1993b; Retrotransfer of IncP plasmid R751 from Escherichia coli maxicells: evidence for the genetic sufficiency of self-transferable plasmids for bacterial conjugation. Mol Microbiol10:57–62[CrossRef]
    [Google Scholar]
  26. Heinemann J. A., Scott H. E., Williams M.. 1996; Doing the conjugative two-step: evidence of recipient autonomy in retrotransfer. Genetics143:1425–1435
    [Google Scholar]
  27. Hill K. E., Weightman A. J., Fry J. C.. 1992; Isolation and screening of plasmids from the epilithon which mobilize recombinant plasmid pD10. Appl Environ Microbiol58:1292–1300
    [Google Scholar]
  28. Hill K. E., Fry J. C., Weightman A. J., Day M. J., Bradley D. J., Cousland B.. 1995; Retrotransfer of IncP1-like plasmids from aquatic bacteria. Lett Appl Microbiol20:317–322[CrossRef]
    [Google Scholar]
  29. Kletsova L. V., Tsygankov Y. D.. 1990; Mapping of pgi and gpd genes involved in C-1 assimilation in the obligate methylotroph Methylobacillus flagellatum. Arch Microbiol153:139–145[CrossRef]
    [Google Scholar]
  30. Lejeune P., Mergeay M., Van Gijsegem F., Faelen M., Gerits J., Toussaint A.. 1983; Chromosome transfer and R-prime plasmid formation mediated by plasmid pULB113 (RP4 mini-Mu) in Alcaligenes eutrophus CH34 and Pseudomonas fluorescens 6.2. J Bacteriol155:1015–1026
    [Google Scholar]
  31. McClure N. C., Fry J. C., Weightman A. J.. 1990; Gene transfer in activated sludge. In Bacterial Genetics in Natural Environments pp.111–132Edited by Fry J. C., Day M. J.. New York: Chapman & Hall;
    [Google Scholar]
  32. McPherson P., Gealt M. A.. 1986; Isolation of indigenous wastewater bacterial strains capable of mobilizing plasmid pBR325. Appl Environ Microbiol51:904–909
    [Google Scholar]
  33. Mergeay M., Lejeune P., Gerits J., Fabry L.. 1984; RP4::miniMu (pULB113) a genetic tool to study bacterial genomes: application to Pseudomonas fluorescens 6.2. Antonie Leeuwenhoek50:297–298[CrossRef]
    [Google Scholar]
  34. Mergeay M., Lejeune P., Thiry G., Faelen M.. 1985; Back transfer: a property of some broad host range plasmids. In Plasmids in Bacteria p.942Edited by Helinski D..others New York: Plenum;
    [Google Scholar]
  35. Mergeay M., Lejeune P., Sadouk A., Gerits J., Fabry L.. 1987; Shuttle transfer (or retrotransfer) of chromosomal markers mediated by plasmid pULB113. Mol Gen Genet209:61–70[CrossRef]
    [Google Scholar]
  36. Mergeay M., Springael D., Top E.. 1990; Gene transfer in polluted soils. In Bacterial Genetics in Natural Environments pp.152–171Edited by Fry J. C., Day M. J.. New York: Chapman & Hall;
    [Google Scholar]
  37. Perkins C. D., Davidson A. M., Day M. J., Fry J. C.. 1994; Retrotransfer kinetics of R300B by pQKH6, a conjugative plasmid from river epilithon. FEMS Microbiol Ecol15:33–44[CrossRef]
    [Google Scholar]
  38. Powell B., Mergeay M., Christofi N.. 1989; Transfer of broad host range plasmids to sulphate-reducing bacteria. FEMS Microbiol Lett59:269–274[CrossRef]
    [Google Scholar]
  39. Ramos-Gonzalez M. I., Ramos-Diaz M. A., Ramos J. L.. 1994; Chromosomal gene capture mediated by the Pseudomonas putida TOL catabolic plasmid. J Bacteriol176:4635–4641
    [Google Scholar]
  40. Ravatn R., Zehnder A. J. B., van der Meer J. R.. 1998; Low-frequency horizontal transfer of an element containing the chlorocatechol degradation genes from Pseudomonas putida F1 and to indigenous bacteria in laboratory-scale activated-sludge microcosms. Appl Environ Microbiol64:2126–2132
    [Google Scholar]
  41. Read T., Thomas A., Wilkins B.. 1992; Evasion of type I and type II restriction systems by IncI1 plasmid ColIb-P9 during transfer by bacterial conjugation. Mol Microbiol6:1933–1941[CrossRef]
    [Google Scholar]
  42. Schoonejans E., Toussaint A.. 1983; Utilization of plasmid pULB113 (RP4::miniMu) to construct a linkage map of Erwinia carotovora subsp. chrysanthemi. J Bacteriol154:1489–1492
    [Google Scholar]
  43. Sia E. A., Kuehner D. M., Figurski D. H.. 1996; Mechanism of retrotransfer in conjugation: prior transfer of the conjugative plasmid is required. J Bacteriol178:1457–1464
    [Google Scholar]
  44. Simon R., Priefer U., Pühler A.. 1983; A broad host range mobilisation system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Bio/Technology1:784–791[CrossRef]
    [Google Scholar]
  45. Smit E. D., Venne D., Van Elsas J. D.. 1993; Mobilization of a recombinant IncQ plasmid between bacteria on agar and in soil via cotransfer or retrotransfer. Appl Environ Microbiol59:2257–2263
    [Google Scholar]
  46. Thiry G., Mergeay M., Faelen M.. 1984; Back mobilization of Tra Mob plasmids mediated by various IncM, IncN and IncP1 plasmids. Arch Int Physiol Biochim92:6465
    [Google Scholar]
  47. Top E.. 1993; Horizontal Gene Transfer in the Environment and the Significance of Broad Host Range Plasmids. PhD thesis University of Gent; Belgium:
  48. Top E., Mergeay M., Springael D., Verstraete W.. 1990; Gene escape model: transfer of heavy metal resistance genes from Escherichia coli to Alcaligenes eutrophus on agar plates and in soil samples. Appl Environ Microbiol56:2471–2479
    [Google Scholar]
  49. Top E., Mergeay M., Springael D.. 1991; Retrotransfer: a specific trait of certain broad-host-range plasmids (which allows the host to pick up new genes from other species and genera). Plasmid25:238
    [Google Scholar]
  50. Top E., Vanrolleghem P., Mergeay M., Verstraete W.. 1992; Determination of the mechanism of retrotransfer by mechanistic mathematical modelling. J Bacteriol174:5953–5960
    [Google Scholar]
  51. Top E., De Smet I., Mergeay M., Verstraete W.. 1994; Exogenous isolation of mobilizing plasmids from polluted soils and sludge. Appl Environ Microbiol60:831–839
    [Google Scholar]
  52. Top E., De Rore H., Collard J. M., Gellens V., Slobodkina G., Verstraete W., Mergeay M.. 1995a; Retromobilization of heavy metal resistance genes in unpolluted and heavy metal polluted soil. FEMS Microbiol Ecol18:191–203[CrossRef]
    [Google Scholar]
  53. Top E., Holben W. E., Forney L. J.. 1995b; Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation. Appl Environ Microbiol61:1691–1698
    [Google Scholar]
  54. Top E., Maltseva O. V., Forney L. J.. 1996; Capture of a catabolic plasmid that encodes only 2,4-dichlorophenoxyacetic acid:α-ketoglutaric acid dioxygenase (TfdA) by genetic complementation. Appl Environ Microbiol62:2470–2476
    [Google Scholar]
  55. Top E., Van Daele P., De Saeyer N., Forney L. J.. 1998; Enhancement of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation in soil by dissemination of catabolic plasmids. Antonie Leeuwenhoek73:87–94[CrossRef]
    [Google Scholar]
  56. Van Gijsegem F., Toussaint A.. 1982; Chromosome transfer and R-prime formation by an RP4 mini-Mu derivative in Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae and Proteus mirabilis. Plasmid7:30–44[CrossRef]
    [Google Scholar]
  57. Wilkins B., Lanka E.. 1993; DNA processing and replication during plasmid transfer between Gram-negative bacteria. In Bacterial Conjugation pp.105–137Edited by Clewell D. B.. New York: Plenum;
    [Google Scholar]
  58. Wlodarczyk M., Piechucka E.. 1995; Conjugal transfer of plasmid and chromosomal markers between strains of Thiobacillus versutus. Curr Microbiol30:185–191[CrossRef]
    [Google Scholar]
  59. Woese C. R.. 1987; Bacterial evolution. Microbiol Rev51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-12-3321
Loading
/content/journal/micro/10.1099/00221287-145-12-3321
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error