1887

Abstract

K-uptake genes of were identified by cloning chromosomal DNA fragments of this organism into plasmids, followed by electroporation and selection for growth at low K concentrations of cells of an strain defective in K uptake. A 4.1 kb DNA fragment contained a cluster of three ORFs on the same DNA strand: the previously identified gene, a gene similar to and a new gene, , whose function is not clear. Products of and were detected in minicells. and from restored growth at low K concentrations of an Δ and an Δ Δ strain, respectively, suggesting that these genes can functionally replace their counterparts. In addition, a plasmid containing permitted growth of an Δ strain at low K concentrations. This effect was mainly due to and was enhanced by from this organism. Measurements of net K-uptake rates indicated that the presence of these genes in renders the Trk systems independent of products from the operon.

Keyword(s): fmv , K+ uptake , trkA , trkH and Vibrio
Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-8-2281
1998-08-01
2021-05-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/8/mic-144-8-2281.html?itemId=/content/journal/micro/10.1099/00221287-144-8-2281&mimeType=html&fmt=ahah

References

  1. Bakker E.P. 1993; Cell K+ and K+ transport systems in prokaryotes.. In Alkali Cation Transport Systems in Prokaryotes pp. 205–224 Bakker E.P. Edited by Boca Raton: CRC Press;
    [Google Scholar]
  2. Bakker E.P., Mangerich W.E. 1981; Interconversion of components of the bacterial proton motive force by electrogenic potassium transport.. J Bacteriol 147:820–826
    [Google Scholar]
  3. Baumann P., Schubert R.H.W. 1984; Family II. Vibrionaceae Veron 1965, 5245AL.. In Bergey’s Manual of Systematic Bacteriology 1 pp. 516–550 Krieg N.R., Holt J.G. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Berlyn M.K.B., Low K.B., Rudd K.E. 1996; Linkage map of Escherichia coli K-12.. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. pp. 1715–1902 Neidhardt F.C. and others Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Blattner F.R., Plunkett G., Bloch C.A. & 14 other authors 1997; The complete genome sequence of Escherichia coli K-12.. Science 277:1453–1474
    [Google Scholar]
  6. Bossemeyer D., Borchard A., Dosch D.C., Helmer G.G, Bakker E.P. 1989; K+ transport protein TrkA of Escherichia coli is a peripheral membrane protein that requires other trk gene products for attachment to the cytoplasmic membrane.. J Biol Chem 264:16403–16410
    [Google Scholar]
  7. Bult C.J., White O., Olsen G.J. & 37 other authors 1996; Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii.. Science 273:1058–1073
    [Google Scholar]
  8. Csonka L.N., Epstein W. 1996; Osmoregulation.. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. pp. 1210–1223 Neidhardt F.C. and others Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Dosch D.C., Helmer G.L., Sutton S.H., Salvacion F.F., Epstein W. 1991; Genetic analysis of potassium transport loci in Escherichia coli: evidence for three constitutive systems mediating uptake of potassium.. J Bacteriol 173:687–696
    [Google Scholar]
  10. Epstein W., Kim B.S. 1971; Potassium transport loci in Escherichia coli K-12.. J Bacteriol 108:639–644
    [Google Scholar]
  11. Fleischmann R.D., Adams M.D., White O. & 37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd.. Science 269:496–512
    [Google Scholar]
  12. Guillon J.-M., Mechulam Y., Schmitter J.-M., Blanquet S., Fayat G. 1992; Disruption of the gene for Met-tRNAfet formyltransferase severely impairs growth of Escherichia coli.. J Bacteriol 174:4294–4301
    [Google Scholar]
  13. Hesse J.E., Wieczorek L., Altendorf K., Reicin A.S., Dorus E., Epstein W. 1984; Sequence homology between two membrane transport ATPases, the Kdp-ATPase of Escherichia coli and Ca2+- ATPase of sarcoplasmic reticulum.. Proc Natl Acad Sci USA 81:4746–4750
    [Google Scholar]
  14. Klenk H.-P., Clayton R.A., Tomb J.-F. & 48 other authors 1997; The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus.. Nature 390:364–370
    [Google Scholar]
  15. Klionsky D.J., Brusilow W.S.A., Simoni R.D. 1984; In vivo evidence for the role of the e subunit as an inhibitor of the proton- translocating ATPase of Escherichia coli.. J Bacteriol 160:1055–1060
    [Google Scholar]
  16. Macario A.J., Dugan C.B., de Macario E.C. 1993; An archaeal trkA homologue near dnaK and dnaj.. Biochim Biophys Acta 1216:495–498
    [Google Scholar]
  17. Nakamura T., Tokuda H., Unemoto T. 1984; K+/H+ antiporter functions as a regulator of cytoplasmic pH in a marine bacterium, Vibrio alginolyticus.. Biochim Biophys Acta 776:330–336
    [Google Scholar]
  18. Nakamura T., Kawasaki S., Unemoto T. 1992; Roles of K+ and Na+ in pH homeostasis and growth of the marine bacterium Vibrio alginolyticus.. J Gen Microbiol 138:1271–1276
    [Google Scholar]
  19. Nakamura T., Komano Y., Itaya E., Tsukamoto K., Tsuchiya T., Unemoto T. 1994a; Cloning and sequencing of an Na+/H+ antiporter gene from the marine bacterium Vibrio alginolyticus.. Biochim Biophys Acta 1190:465–468
    [Google Scholar]
  20. Nakamura T., Matsuba Y., Yamamuro N., Booth I.R., Unemoto T. 1994b; Cloning and sequencing of a K+ transport gene {trkA) from the marine bacterium Vibrio alginolyticus.. Biochim Biophys Acta 1219:701–705
    [Google Scholar]
  21. Nakamura T., Suzuki F., Abe M., Matsuba Y., Unemoto T. 1994c; K+ transport in Vibrio alginolyticus: isolation of a mutant defective in an inducible K+ transport system.. Microbiology 140:1781–1785
    [Google Scholar]
  22. Nakamura T., Enomoto H., Unemoto T. 1996a; Cloning and sequencing of the nhaB gene encoding an Na+/H+ antiporter from Vibrio alginolyticus.. Biochim Biophys Acta 1275:157–160
    [Google Scholar]
  23. Nakamura T., Katoh Y., Shimizu Y., Matsuba Y., Unemoto T. 1996b; Cloning and sequencing of novel genes from Vibrio alginolyticus that support the growth of K+ uptake-deficient mutant of Escherichia coli.. Biochim Biophys Acta 1277:201–208
    [Google Scholar]
  24. Nakamura T., Yuda R., Unemoto T., Bakker E.P. 1998; KtrAB, a new type of bacterial K+-uptake system from Vibrio alginolyticus.. J Bacteriol 180: (in press)
    [Google Scholar]
  25. Parra-Lopez C., Baer M.T., Groisman E.A. 1993; Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium.. EMBO J 12:4053–4062
    [Google Scholar]
  26. Parra-Lopez C., Lin R., Aspedon A., Groisman E.A. 1994; ASalmonella protein that is required for resistance to antimicrobial peptides and transport of potassium.. EMBO J 13:3964–3972
    [Google Scholar]
  27. Pearson W.R., Lipman D.J. 1988; Improved tools for biological sequence comparison.. Proc Natl Acad Sci USA 85:2444–2448
    [Google Scholar]
  28. Reeve J. 1984; Synthesis of bacteriophage and plasmid-encoded polypeptides in minicells.. In Advanced Molecular Genetics pp. 212–223 Piihler A., Timmis K.N. Edited by Berlin: Springer;
    [Google Scholar]
  29. Rhoads D.B., Epstein W. 1977; Energy coupling to net K+ transport in Escherichia coli K-12.. J Biol Chem 253:1394–1401
    [Google Scholar]
  30. Rhoads D.B., Waters F.B., Epstein W. 1976; Cation transport in Escherichia coli. VIII. Potassium transport mutants.. J Gen Physiol 67:325–341
    [Google Scholar]
  31. Sambrook J., Fritsch F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Schlösser A., Kluttig S., Hamann A., Bakker E.P. 1991; Subcloning, nucleotide sequence, and expression of trkG, a gene that encodes an integral membrane protein involved in potassium uptake via the Trk system of Escherichia coli.. J Bacteriol 173:3170–3176
    [Google Scholar]
  33. Schlösser A., Hamann A., Bossemeyer D., Schneider E., Bakker E.P. 1993; NAD+ binding to the Escherichia coli K+- uptake protein Trk A and sequence similarity between TrkA and domains of a family of dehydrogenases suggest a role of NAD+ in bacterial transport.. Mol Microbiol 9:533–543
    [Google Scholar]
  34. Schlösser A., Meldorf M., Stumpe S., Bakker E.P., Epstein W. 1995; TrkH and its homologue, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli.. J Bacteriol 177:1908–1910
    [Google Scholar]
  35. Schlösser A., Kampers T., Schrempf H. 1997; The Strepto- myces ATP-binding component MsiK assists in cellobiose and maltose transport.. J Bacteriol 179:2092–2095
    [Google Scholar]
  36. Silver S. 1996; Transport of inorganic cations.. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. pp. 1091–1102 Neidhardt F.C. and others Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Smith D.R., Doucette-Stamm L.A., Deloughery C. & 34 other authors 1977; Complete genome sequence of Methanobac- terium thermoautotrophicum AH: functional analysis and comparative genomics.. J Bacteriol 179:7135–7155
    [Google Scholar]
  38. Stewart G.S.A.B., Lubinsky-Mink S., Jackson C.G., Kuhn J. 1986; pHG165: a pBR322 copy number derivative of pUC8 for cloning and expression.. Plasmid 15:172–181
    [Google Scholar]
  39. Stewart LM.D., Bakker E.P., Booth I.R. 1985; Energy coupling to K+ uptake via the Trk system in Escherichia coli: the role of ATP.. J Gen Microbiol 131:77–85
    [Google Scholar]
  40. Stumpe S., Bakker E.P. 1997; Requirement of a large K+- uptake capacity and of extracytoplasmic protease activity for protamine resistance of Escherichia coli.. Arch Microbiol 167:126–136
    [Google Scholar]
  41. Stumpe S., Schlösser A., Schleyer M., Bakker E.P. 1996; K+circulation across the prokaryotic cell membrane: K+-uptake systems.. In Handbook of Biological Physics 2 pp. 474–499 Konings W.N., Kaback H.R., Lolkema J.S. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  42. Sukharev S.I., Blount P., Martinac B., Blattner F.R., Kung C. 1994; A large-conductance mechanosensitive channel in E. coli encoded by mscL alone.. Nature 368:265–268
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-8-2281
Loading
/content/journal/micro/10.1099/00221287-144-8-2281
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error