1887

Abstract

Summary: Chemotaxis towards carbohydrates is mediated, in enteric bacteria, either by the transport-independent, methylation-dependent chemotaxis pathway or by transport and phosphorylation via the phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS). This study shows that is chemotactic to a range of carbohydrates but the response involves neither the classical methyl-accepting chemotaxis protein (MCP) pathway nor the PTS transport pathway. The chemoattractant fructose was transported by a fructose-specific PTS system, but transport through this system did not appear to cause a chemotactic signal. Chemotaxis to sugars was inducible and occurred with the induction of carbohydrate transport systems and with substrate incorporation. A mutation of the glucose-6-phosphate dehydrogenase gene () inhibited chemotaxis towards substrates metabolized by this pathway although transport was unaffected. Chemotaxis to other, unrelated, chemoattractants (e.g. succinate) was unaffected. These data, in conjunction with the fact that mannitol and fructose (which utilize different transport pathways) compete in chemotaxis assays, suggest that in the chemotactic signal is likely to be generated by metabolic intermediates or the activities of the electron-transport chain and not by a cell-surface receptor or the rate or mode of substrate transport.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-1-229
1998-01-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/1/mic-144-1-229.html?itemId=/content/journal/micro/10.1099/00221287-144-1-229&mimeType=html&fmt=ahah

References

  1. Armitage J. P. 1992; Behavioral responses in bacteria. Annu Rev Physiol 54:683–714
    [Google Scholar]
  2. Armitage J. P., Schmitt R. 1997; Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti – variations on a theme?. Microbiology 143:3671–3682
    [Google Scholar]
  3. Armitage J. P., Ingham C., Evans M. C. W. 1985; Role of the proton motive force in phototactic and aerotactic responses of Rhodopseudomonas sphaeroides. . J Bacteriol 163:967–972
    [Google Scholar]
  4. Armitage J. P., Havelka W. A., Sockett R. E. 1990a; Methylation-independent taxis in bacteria. In Biology of the Chemotactic Response (Society for General Microbiology Symposium 46), pp 177–198 Edited by Armitage J. P., Lackie J. M. Cambridge: Cambridge University Press;
    [Google Scholar]
  5. Armitage J. P., Poole P. S., Brown S. 1990b; Sensory signalling in Rhodobacter sphaeroides. . In Molecular Biology of Membrane Bound Complexes in Phototrophic Bacteria p 406 Edited by Drews G. New York: Plenum Press;
    [Google Scholar]
  6. Berg H. C., Block S. M. 1984; A minature flow cell designed for rapid exchange of media under high-powered objectives. J Gen Microbiol 130:2915–2920
    [Google Scholar]
  7. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  8. Blat Y., Eisenbach M. 1994; Phosphorylation-dependent binding of the chemotaxis signal molecule CheY to its phosphatase, CheZ. Biochemistry 33:902–906
    [Google Scholar]
  9. Conley M. P., Wolfe A. J., Blair D. F., Berg H. C. 1989; Both CheA and CheW are required for reconstitution of chemotactic signaling in Escherichia coli. . J Bacteriol 171:5190–5193
    [Google Scholar]
  10. Daniels G. A., Drews G., Saier M. H. Jr 1988; Properties of a Tn5 insertion mutant defective in the structural gene (fruA) of the fructose specific phosphotransferase system of Rhodobacter capsulatus and cloning the fru regulon. J Bacteriol 170:1698–1703
    [Google Scholar]
  11. Eraso J. M., Kaplan S. 1994; prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. . J Bacteriol 176:32–43
    [Google Scholar]
  12. Eraso J. M., Kaplan S. 1995; Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. J Bacteriol 177:2695–2706
    [Google Scholar]
  13. Fraenkel D. G. 1968; The phosphenolpyruvate pathway of fructose metabolism in Escherichia coli. . J Biol Chem 243:6453–6463
    [Google Scholar]
  14. Geerse R. H., Izzo F., Postma P. W. 1989; The PEP:fructose phosphotransferase system in Salmonella typhimurium: FPr combines enzyme IIIFru and pseudo-HPr activities. Mol Gen Genet 216:517–525
    [Google Scholar]
  15. Grishanin R. N., Gauden D. E., Armitage J. P. 1997; Photoresponses in Rhodobacter sphaeroides: role of photosynthetic electron transport. J Bacteriol 179:24–30
    [Google Scholar]
  16. Grübl G., Vogler A. P., Lengeler J. W. 1990; Involvement of the histidine protein (HPr) of the phosphotransferase system in chemotactic signaling of Escherichia coli K-12. J Bacteriol 172:5871–5876
    [Google Scholar]
  17. Hamblin P. A., Bourne N. A., Armitage J. P. 1997; Characterisation of the chemotaxis protein CheW from Rhodobacter sphaeroides and its effect on the behaviour of Escherichia coli. . Mol Microbiol 24:41–51
    [Google Scholar]
  18. Hazelbauer G. L., Yaghmai R., Burrows G. G., Baumgartner J. W., Dutton D. P., Morgan D. G. 1990; Transducers: transmembrane receptor proteins involved in bacterial chemotaxis. In Biology of the Chemotactic Response pp 107–134 Edited by Armitage J. P., Lackie J. M. Cambridge: Cambridge University Press;
    [Google Scholar]
  19. Hess J. F., Oosawa K., Kaplan N., Simon M. I. 1988; Phosphorylation of three proteins in the signalling pathway of bacterial chemotaxis. Cell 53:79–87
    [Google Scholar]
  20. Holzapfel W., Finkele U., Kaiser W., Oesterhelt D., Scheer H., Stilz H. U., Zinth W. 1990; Initial electron-transfer in the reaction center from Rhodobacter sphaeroides. . Proc Natl Acad Sci USA 87:5168–5172
    [Google Scholar]
  21. Ingham C. J., Armitage J. P. 1987; Involvement of transport in Rhodobacter sphaeroides. . J Bacteriol 169:5801–5807
    [Google Scholar]
  22. Jacobs M. H. J., van der Heide T., Tolner B., Driessen A. J. M., Konings W. N. 1995; Expression of the gltp gene of Escherichia coli in a glutamate transport-deficient mutant of Rhodobacter sphaeroides restores chemotaxis to glutamate. Mol Microbiol 18:641–647
    [Google Scholar]
  23. Lengeler J. W., Vogler A. P. 1989; Molecular mechanisms of bacterial chemotaxis towards PTS-carbohydrates. FEMS Microbiol Rev 63:81–92
    [Google Scholar]
  24. Lolkema J. S., Robillard G. T. 1985; Phosphoenolpyruvate-dependent fructose system in Rhodopseudomonas sphaeroides. . Eur J Biochem 147:69–75
    [Google Scholar]
  25. Lolkema J. S., Ten Hoeve-Duukens R. H., Robillard G. 1985; The phosphoenolpyruvate-dependent fructose specific phosphotransferase system in Rhodopseudomonas sphaeroides. Mechanism of transfer of the phosphoryl group from phosphoenol-pyruvate to fructose. Eur J Biochem 149:625–631
    [Google Scholar]
  26. Lolkema J. S., Ten Hoeve-Duurkens R. H., Robillard G. T. 1986; The phosphoenolpyruvate-dependent fructose-specific phosphotransferase system in Rhodopseudomonas sphaeroides. . Eur J Biochem 161:211–215
    [Google Scholar]
  27. Lux R., Jahreis K., Bettenbrock K., Parkinson J. S., Lengeler J. W. 1995; Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. . Proc Natl Acad Sci USA 92:11583–11587
    [Google Scholar]
  28. Messing J. 1983; New M13 vectors for cloning. Methods Enzymol 101:20
    [Google Scholar]
  29. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in the construction of insertion mutants: osmoregulation of outer membrane proteins and virulence in Vibrio cholerae requires toxR. . J Bacteriol 170:2575–2583
    [Google Scholar]
  30. Montrone M., Oesterhelt D., Marwan W. 1996; Phosphorylation-independent bacterial chemoresponses correlate with changes in the cytoplasmic levels of fumarate. J Bacteriol 178:6882–6887
    [Google Scholar]
  31. Niwano M., Taylor B. L. 1982; Novel sensory adaptation mechanism in bacterial chemotaxis to oxygen and phosphotransferase substrates. Proc Natl Acad Sci USA 79:11–15
    [Google Scholar]
  32. Penfold R. J., Pemberton J. M. 1992; An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene 118:145–146
    [Google Scholar]
  33. Poole P. S., Armitage J. P. 1989; Role of metabolism in the chemotactic response of Rhodobacter sphaeroides to ammonia. J Bacteriol 171:2900–2902
    [Google Scholar]
  34. Poole P. S., Sinclair D. R., Armitage J. P. 1988; Real time computer tracking of free-swimming and tethered rotating cells. Anal Biochem 175:52–58
    [Google Scholar]
  35. Poole P. S., Smith M. J., Armitage J. P. 1993; Chemotactic signalling in Rhodobacter sphaeroides requires metabolism of attractants. J Bacteriol 175:291–294
    [Google Scholar]
  36. Postma P. W., Lengeler J. W. 1985; Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiol Rev 49:232–269
    [Google Scholar]
  37. Rowsell E. H., Smith J. M., Wolfe A., Taylor B. L. 1995; CheA, CheW, and CheY are required for chemotaxis to oxygen and sugars of the phosphotransferase system in Escherichia coli. . J Bacteriol 177:6011–6014
    [Google Scholar]
  38. Saier M. H. Jr 1989; Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol Rev 53:109–120
    [Google Scholar]
  39. Saier M. H. Jr 1993; Regulatory interactions involving the proteins of the phosphotransferase system in enteric bacteria. J Cell Biochem 51:62–68
    [Google Scholar]
  40. Saier M. H. Jr, Fuecht B. U., Roseman S. 1971; Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria. J Biol Chem 246:7819–7821
    [Google Scholar]
  41. Saier M. H. Jr, Wu L. -F., Baker M. E., Sweet G., Reizer A., Reizer J. 1990; Evolution of permease diversity and energy-coupling mechanisms with special reference to the bacterial phosphotransferase system. Biochim Biophys Acta Bio-Energetics 1018:248–251
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Simon R., Priefer U., Puhler A. 1983a; Vector Plasmids for in vivo and in vitro manipulations of Gram-negative bacteria. In Molecular Genetics of the Bacteria–Plant Interaction p 99 Edited by Puhler A. Berlin: Springer;
    [Google Scholar]
  44. Simon R., Priefer U., Puhler A. 1983b; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio Technology 1:784–794
    [Google Scholar]
  45. Sockett R. E., Foster J. C. A., Armitage J. P. 1990; Molecular biology of the Rhodobacter sphaeroides flagellum. FEMS Symp 53:473–479
    [Google Scholar]
  46. Stock J., Borczuk A., Chiou F., Burchenal J. 1985; Compensatory mutations in receptor function: a re-evaluation of the role of methylation in bacterial chemotaxis. Proc Natl Acad Sci USA 82:8364–8368
    [Google Scholar]
  47. Szymona M., Doudoroff M. 1960; Carbohydrate metabolism in Rhodopseudomonas sphaeroides. . J Gen Microbiol 22:167–183
    [Google Scholar]
  48. Tabor S., Richardson C. C. 1987; DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci USA 84:4767–4771
    [Google Scholar]
  49. Taylor B. L., Lengeler J. W. 1990; Transductive coupling by methylated transducing proteins and permeases of the phosphotransferase system in bacterial chemotaxis. In Membrane Transport and Information Storage pp 69–90 Edited by Aloia R. C., Curtain C. C., Gordon L. M. New York: Alan R. Liss;
    [Google Scholar]
  50. Ward M. J., Bell A. W., Hamblin P. A., Packer H. L., Armitage J. P. 1995a; Identification of a chemotaxis operon with two cheY genes in Rhodobacter sphaeroides. . Mol Microbiol 17:357–366
    [Google Scholar]
  51. Ward M. J., Harrison D. M., Ebner M. J., Armitage J. P. 1995b; Identification of a methyl-accepting chemotaxis protein in Rhodobacter sphaeroides. . Mol Microbiol 18:115–121
    [Google Scholar]
  52. Wu L. -F., Tomich J. M., Saier M. H. Jr 1990; Structure and evolution of a multidomain multiphosphoryl transfer protein. Nucleotide sequence of the fruB(HI) gene in Rhodobacter capsulatus and comparisons with homologous genes from other organisms. J Mol Biol 213:687–703
    [Google Scholar]
  53. Wu L. -F., Reizer A., Reizer J., Cai B., Tomich J. M., Saier M. H. Jr 1991; Nucleotide sequence of the Rhodobacter capsulatus fruK gene, which encodes fructose-1-phosphate kinase: evidence for a kinase superfamily including both phosphofructokinases of Escherichia coli. . J Bacteriol 173:3117–3127
    [Google Scholar]
  54. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  55. Yonekawa H., Hayashi H., Parkinson J. S. 1983; Requirement of the cheB function for sensory adaptation in Escherichia coli. . J Bacteriol 156:1228–1235
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-1-229
Loading
/content/journal/micro/10.1099/00221287-144-1-229
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error