1887

Abstract

A computer-aided analysis of high resolution two-dimensional polyacrylamide gels was used to investigate the changes in the protein synthesis profile in wild-type strains and mutants in response to heat shock, salt and ethanol stress, and glucose or phosphate starvation. The data provided evidence that the induction of at least 42 general stress proteins absolutely required the alternative sigma factor sGB. However, at least seven stress proteins, among them ClpC, ClpP, Sod, AhpC and AhpF, remained stress-inducible in a mutant. Such a detailed analysis also permitted the description of subgroups of general stress proteins which are subject to additional regulatory circuits, indicating a very thorough fine-tuning of this complex response. The relative synthesis rate of the general stress proteins constituted up to 40% of the total protein synthesis of stressed cells and thereby emphasizes the importance of the stress regulon. Besides the induction of these general or rather unspecific stress proteins, the induction of stress-specific proteins is shown and discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-3-999
1997-03-01
2021-04-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/3/mic-143-3-999.html?itemId=/content/journal/micro/10.1099/00221287-143-3-999&mimeType=html&fmt=ahah

References

  1. Abshire K.Z., Neidhardt F.C. 1993; Analysis of proteins synthesized by Salmonella typbimurium during growth within a host macrophage.. J Bacteriol 175:3734–3743
    [Google Scholar]
  2. Alper S., Dufour A., Garsin D.A., Duncan L., Losick R. 1996; Role of adenosine nucleotides in the regulation of a stress- response transcription factor in Bacillus subtilis.. J Mol Biol 260:165–177
    [Google Scholar]
  3. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis.. J Bacteriol 81:741–746
    [Google Scholar]
  4. Antelmann H., Bernhardt J., Schmid R., Hecker M. 1995; Agene at 333 degrees on the Bacillus subtilis chromosome encodes the newly identified σB-dependent general stress protein GspA.. J Bacteriol 177:3540–3545
    [Google Scholar]
  5. Antelmann H., Engelmann S., Schmid R., Hecker M. 1996; General and oxidative stress responses in Bacillus subtilis: cloning, expression and mutation of the alkyl hydroperoxide reductase operon.. J Bacteriol 178:6571–6578
    [Google Scholar]
  6. Benson A.K., Haldenwang W.G. 1992; Characterization of a regulatory network that controls σB expression in Bacillus subtilis.. J Bacteriol 174:749–757
    [Google Scholar]
  7. Benson A.K., Haldenwang W.G. 1993; Regulation of σB levels and activity in Bacillus subtilis.. J Bacteriol 175:2347–2356
    [Google Scholar]
  8. Boylan S.A., Redfield A.R., Price C.W. 1993; Transcription factor σB of Bacillus subtilis controls a large stationary phase regulon.. J Bacteriol 175:3957–3963
    [Google Scholar]
  9. Boylan S.A., Rutherford A., Thomas S.M., Price C.W. 1992; Activation of Bacillus subtilis transcription factor σB by a regulatory pathway responsive to stationary phase signals.. J Bacteriol 174:3695–3706
    [Google Scholar]
  10. Chen L, Kermati L., Helmann J.D. 1995; Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions.. Proc Natl Acad Sci USA 92:8190–8194
    [Google Scholar]
  11. Dufour A., Völker U., Völker A., Haldenwang W.G. 1996; Relative levels and fractionation properties of Bacillus subtilis σB and its regulators during balanced growth and stress.. J Bacteriol 178:3701–3709
    [Google Scholar]
  12. Duncan M.L., Kalman S.S., Thomas M., Price C.W. 1987; Gene encoding the 37000-dalton minor sigma factor of Bacillus subtilis RNA polymerase isolation, nucleotide sequence,chromosomal locus, and cryptic function.. J Bacteriol 169:771–778
    [Google Scholar]
  13. Engelmann S., Lindner C., Hecker M. 1995; Cloning, nucleotide sequence, and regulation of katE encoding a σB- dependent catalase in Bacillus subtilis.. J Bacteriol 177:5598–5605
    [Google Scholar]
  14. Eymann C., Mach H., Hardwoord C.R., Hecker M. 1996; Phosphate-starvation-inducible proteins in Bacillus subtilis - a two-dimensional electrophoresis study.. Microbiology 142:3163–3170
    [Google Scholar]
  15. Glaser P., Kunst F., D6barbouillé M., Vertes A., Danchin A., Dedonder R. 1991; A gene encoding a tyrosine tRNA synthetase is located near sacS in Bacillus subtilis.. DNA Seq 1:251–261
    [Google Scholar]
  16. Graumann P., Schröder K., Schmid R., Marahiel M.A. 1996; Cold shock stress-induced proteins in Bacillus subtilis.. J Bacteriol 178:4611–4619
    [Google Scholar]
  17. Hartford O.M., Dowds B.C.A. 1994; Isolation and characterization of a hydrogen peroxide resistant mutant of Bacillus subtilis.. Microbiology 140:297–304
    [Google Scholar]
  18. Hecker M., Völker U. 1990; General stress proteins in Bacillus subtilis.. FEMS Microbiol Ecol 74:197–213
    [Google Scholar]
  19. Hecker M., Schumann W., Völker U. 1996; Heat-shock and general stress response in Bacillus subtilis.. Mol Microbiol 19:417–428
    [Google Scholar]
  20. Hilden I., Krath B.N., Hove-Jensen B. 1995; Tricistronic operon expression of the genes gcaD (tms), which encodes N- acetylglucosamine 1-phosphate uridyltransferase, prs, which encodes phosphoribosyl diphosphate synthetase, and etc in vegetative cells of Bacillus subtilis.. J Bacteriol 177:7280–7284
    [Google Scholar]
  21. Igo M., Lampe M., Ray C., Schafer W., Moran C.P., Losick R. 1987; Genetic studies of a secondary RNA polymerase sigma factor in Bacillus subtilis.. J Bacteriol 169:3464–3469
    [Google Scholar]
  22. Kalman S., Duncan M.L., Thomas S.M. 1990; Similar organization of the sigB and spollA operons encoding alternative sigma factors of Bacillus subtilis RNA polymerase.. J Bacteriol 172:5575–5585
    [Google Scholar]
  23. Kruger E., Völker U., Hecker M. 1994; Stress induction of clpC in Bacillus subtilis and its involvement in stress tolerance.. J Bacteriol 176:3360–3367
    [Google Scholar]
  24. Kruger E., Msadek T., Hecker M. 1996; Alternate promoters direct stress-induced transcription of the Bacillus subtilis clpC operon.. Mol Microbiol 20:713–723
    [Google Scholar]
  25. Loewen P.C., Hengge-Aronis R. 1994; The role of the sigma factor σS (KatF) in bacterial global regulation.. Annu Rev Microbiol 48:53–80
    [Google Scholar]
  26. Lottering E.A., Streips U.N. 1995; Induction of cold shock proteins in Bacillus subtilis.. Curr Microbiol 30:193–199
    [Google Scholar]
  27. Lupi C.G., Colangelo T., Mason A. 1995; Two-dimensional gel electrophoresis analysis of the response of Pseudomonas putida KT2442 to 2-chlorophenol.. J Environ Microbiol 67:2863–2872
    [Google Scholar]
  28. Maul B., Völker U., Riethdorf S., Engelmann S., Hecker M. 1995; σB-dependent regulation of gsiB in response to multiple stimuli in Bacillus subtilis.. Mol Gen Genet 248:114–120
    [Google Scholar]
  29. Miller B.S., Kennedy T.E., Streips U.N. 1991; iMolecular characterization of specific heat-shock proteins in Bacillus subtilis.. Curr Microbiol 22:231–236
    [Google Scholar]
  30. Moran C.P. Jr Johnson W.C., Losick R. 1982; Close contacts between σ37-RNA polymerase and a Bacillus subtilis chromosome promoter.. J Mol Biol 162:709–713
    [Google Scholar]
  31. Msadek T., Kunst F., Rapoport G. 1994; MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperatures.. Proc Natl Acad Sci USA 91:5788–5792
    [Google Scholar]
  32. Mueller J.P., Bukusoglu G., Sonenshein A.L. 1992; Tran- scriptional regulation of the Bacillus subtilis glucose starvationinducible genes: control of gsiA by the ComP-ComA signal transduction system.. J Bacteriol 174:4361–4373
    [Google Scholar]
  33. Puglia A.M., Vohradsky J., Thompson C.J. 1995; Developmental control of the heat-shock stress regulon in Streptomyces coelicolor.. Mol Microbiol 17:737–746
    [Google Scholar]
  34. Schmid R., Bernhardt J., Antelmann H., Vdlker A., Mach H., Völker U., Hecker M. 1997; Identification of vegetative proteins for a two-dimensional protein index for Bacillus subtilis.. Microbiology 143:991–998
    [Google Scholar]
  35. Schmidt A., Schiesswohl M., Völker U., Hecker M., Schumann W. 1992; Cloning, sequencing, mapping, and transcriptional analysis of the groESL operon from Bacillus subtilis.. J Bacteriol 174:3993–3999
    [Google Scholar]
  36. Schulz A., Tzschaschel B., Schumann W. 1995; Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis.. Mol Microbiol 15:421–429
    [Google Scholar]
  37. Smith L., Paress P., Cabane K., Dubnau E. 1980; Genetics and physiology of the rel system of Bacillus subtilis.. Mol Gen Genet 179:271–279
    [Google Scholar]
  38. Stülke J., Hanschke R., Hecker M. 1993; Temporal activation of βglucanase synthesis in Bacillus subtilis is mediated by the GTP pool.. J Gen Microbiol 139:2041–2045
    [Google Scholar]
  39. Tatti K.M., Kenney T.J., Hay R.E., Moran C.P. Jr 1985; Promoter specificity of a sporulation-induced form of RNA polymerase from Bacillus subtilis.. Gene 36:151–157
    [Google Scholar]
  40. VanBogelen R.A., Sankar P., Clark R.L., Bogan J.A., Neidhardt F.C. 1992; The gene-protein database of Escherichia coli Edition 5.. Electrophoresis 13:1014–1054
    [Google Scholar]
  41. VanBogelen R.A., Olson E.R., Wanner B.L., Neidhardt F.C. 1996; Global analysis of proteins synthesized during phosphorus restriction in E. coli. . J Bacteriol 178:4344–4366
    [Google Scholar]
  42. Varon D., Boylan S.A., Okamoto K., Price C.W. 1993; Bacillus subtilis gtaB encodes UDP-glucose pyrophosphorylase and is controlled by stationary-phase transcription factor σB.. J Bacteriol 175:3964–3971
    [Google Scholar]
  43. Völker U., Mach H., Schmid R., Hecker M. 1992; Stress proteins and cross-protection by heat shock and salt stress in Bacillus subtilis.. J Gen Microbiol 138:2125–2135
    [Google Scholar]
  44. Völker U., Engelmann S., Maul B., Riethdorf S., Völker A., Schmid R., Mach H., Hecker M. 1994; Analysis of the induction of general stress proteins of Bacillus subtilis.. Microbiology 140:741–752
    [Google Scholar]
  45. Völker U., Dufour A., Haldenwang W.G. 1995a; The Bacillus subtilis rsbU gene product is necessary for RsbX-dependent regulation of σB.. J Bacteriol 177:114–122
    [Google Scholar]
  46. Völker U., Völker A., Maul B., Hecker M., Dufour A., Haldenwang W.G. 1995b; Separate mechanisms activate σB of Bacillus subtilis in response to environmental and metabolic stresses.. J Bacteriol 177:3771–3780
    [Google Scholar]
  47. Wetzstein M., Völker U., Dedio J., Lobau S., Zuber U., Schiesswohl M., Herget C., Hecker M., Schumann W. 1992; Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis.. J Bacteriol 174:3300–3310
    [Google Scholar]
  48. Wise A.A., Price C.W. 1995; Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor σB in response to environmental signals.. J Bacteriol 177:123–133
    [Google Scholar]
  49. Yang X., Kang C.M., Brody M.S., Price C.W. 1996; Opposing pairs of serine protein kinase and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor.. Genes Dev 10:2265–2275
    [Google Scholar]
  50. Yuan G., Wong S.-L. 1995a; Regulation of groE expression in Bacillus subtilis: the involvement of the σA-like promoter and the roles of the inverted repeat sequence (CIRCE).. J Bacteriol 177:5427–5433
    [Google Scholar]
  51. Yuan G., Wong S.-L. 1995b; Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK.. J Bacteriol 177:6462–6468
    [Google Scholar]
  52. Zuber U., Schumann W. 1994; CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis.. J Bacteriol 176:1359–1363
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-3-999
Loading
/content/journal/micro/10.1099/00221287-143-3-999
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error