1887

Abstract

Different approaches were used to examine the function of teichoic acids (TA) as phage receptors among selected strains, and to identify and characterize specific receptor structures of host cells belonging to different serovars. This included successive removal of cell wall constituents, preparation and purification of TA, and GLC analysis of TA components. Adsorption of bacteriophages could be inhibited by polyvalent antisera, specific lectins and addition of purified TA. The results confirmed the necessity of TA in general and of rhamnose and glucosamine in particular for adsorption of phage A118, which is a temperate Siphovirus (morphotype B1), attacking predominantly serovars 1/2. Host binding of siphoviral phage A500 (predominantly lysing serovars 4b), was also dependent on cell wall TA. A phage-resistant strain was shown to lack glucosamine in its TA. These results support the view that TA substituents may play an important role not only in antigenicity of cells, but also in specificity of host recognition by two temperate phages. In contrast, the broad-host-range virulent phage A511 (Myovirus, morphotype A1) uses the listerial peptidoglycan as primary receptor. This corresponds well with the observation that A511 is capable of lysing the majority of strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-4-985
1996-04-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/4/mic-142-4-985.html?itemId=/content/journal/micro/10.1099/00221287-142-4-985&mimeType=html&fmt=ahah

References

  1. Ames B.N. Assay of inorganic phosphate, total phosphate and phosphatases. Methods Engymol 1966; 8:115–118
    [Google Scholar]
  2. Archibald A.R. Cell wall assembly in bacillus subtilis. Development of bacteriophage binding properties as a result of the pulsed incorporation of teichoic acids. J Bacteriol 1976; 127:956–960
    [Google Scholar]
  3. Chatterjee A.N. Use of bacteriophage-resistant mutants to study the nature of the bacteriophage receptor site of Staphylococcus aureus. J Bacteriol 1969; 98:519–527
    [Google Scholar]
  4. Cleary P.P., Wannamaker L.W., Fisher M., Laible N. Studies of the receptor for phage A25 in group A streptococci. The role of peptidoglycan in reversible adsorption. J Exp Med 1977; 154:578–593
    [Google Scholar]
  5. Coyette J., Ghuysen J.M. Structure of the cell wall of Staphylococcus aureus strain Copenhagen IX Teichoic acid and phage adsorption. Biochem 1968; 7:2385–2389
    [Google Scholar]
  6. Douglas L.J., Wolin M.J. Cell wall polymers and phage lysis of Eactobacillus plantarum. Biochem 1971; 10:1551–1555
    [Google Scholar]
  7. Fiedler F., Ruhland G.J. Structure of Listeria monocytogenes cell walls. Bull Inst Pasteur 1987; 85:287–300
    [Google Scholar]
  8. Fiedler F., Schäffler M.J., Stackebrandt E. Biochemical and nucleic acid hybridisation studies on Brevibacterium linens and related strains. Arch Microbiol 1981; 129:85–93
    [Google Scholar]
  9. Fiedler F., Seger J., Schrettenbrunner A., Seeliger H.R.P. The biochemistry of murein and cell wall teichoic acids in the genus Listeria. Syst Appl Microbiol 1984; 5:360–376
    [Google Scholar]
  10. Fox A., Morgan S.L., Hudson J.R., Zhu Z.T. Capillary gas chromatographic analysis of alditol acetates of neutral and amino sugars in bacterial cell walls. J Chromatogr 1983; 256:429–438
    [Google Scholar]
  11. Fujii H., Kamisango K., Nagaoka M., Uchikawa K., Sekikawa I., Yamamoto K., Azuma I. Structural study on teichoic acid of Listeria monocytogenes types 4a and 4d. J Biochem 1985; 97:883–891
    [Google Scholar]
  12. Givan A.L., Glassey K., Green R.S., Lang W.K., Anderson A.J., Archibald A.R. Relation between wall teichoic acid content of Bacillus subtilis and efficiency of adsorption of bacteriophages SP50 and 25. Arch Microbiol 1982; 133:318–322
    [Google Scholar]
  13. Glaser L., Ionesco H., Schaeffer P. Teichoic acids as components of a specific phage receptor in Bacillus subtilis. Biochim Biophys Acta 1966; 124:415–417
    [Google Scholar]
  14. Goldstein I.J., Hayes C.E. The lectins. Carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem 1978; 35:127–340
    [Google Scholar]
  15. Hancock I.C., Poxton I.R. Bacterial Cell Surface Techniques 1988 Edited by Goodfellow M. Chichester: John Wiley;
    [Google Scholar]
  16. Ishibashi K., Takesue S., Watanabe K., Oishi K. Use of lectins to characterize the receptor sites for bacteriophage PL-1 of Lactobacillus casei. J Gen Microbiol 1982; 128:2251–2259
    [Google Scholar]
  17. Kamisango K., Fujii H., Okumara H., Saiki I., Araki Y., Yamamura Y., Azuma I. Structural and immunochemical studies of teichoic acid of Listeria monocytogenes. J Biochem 1983; 93:1401–1409
    [Google Scholar]
  18. Keogh B.P., Pettingill G. Adsorption of bacteriophage eb7 on Streptococcus cremoris EB7. Appl Environ Microbiol 1983; 45:1946–1948
    [Google Scholar]
  19. Knox K.W., Wicken A.J. Immunological properties of teichoic acids. Bad Rev 1973; 37:215–257
    [Google Scholar]
  20. Lindberg A.A. Bacteriophage receptors. Annu Rev Microbiol 1973; 27:205–241
    [Google Scholar]
  21. Lis H., Sharon N. Lectins as molecules and as tools. Annu Rev Biochem 1986; 55:35–67
    [Google Scholar]
  22. Loessner M.J. Improved procedure for bacteriophage typing of Listeria strains and evaluation of new phages. Appl Environ Microbiol 1991; 57:882–884
    [Google Scholar]
  23. Loessner M.J., Busse M. Bacteriophage typing of Listeria species. Appl Environ Microbiol 1990; 56:1912–1918
    [Google Scholar]
  24. Monteville M.R., Ardestani B., Geller B.L. Lactococcal bacteriophages require a host cell wall carbohydrate and a plasma membrane protein for adsorption and ejection of DNA. Appl Environ Microbiol 1994; 60:3204–3211
    [Google Scholar]
  25. Oram J.D. Isolation and properties of a phage receptor substance from the plasma membrane of Streptococcus ladis ML3. J Gen Virol 1971; 13:59–71
    [Google Scholar]
  26. Sambrook I., Fritsch E.F., Maniatis T. Molecular Cloning: a Laboratory Manual 1989 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Schleifer K.H., Steber J. Chemische Untersuchungen am Phagenrezeptor von Staphylococcus epidermidis. Arch Microbiol 1974; 98:251–270
    [Google Scholar]
  28. Shaw D.R.D., Chatterjee A.N. O-Acetyl groups as a component of the bacteriophage receptor on Staphylococcus aureus cell walls. J Bacteriol 1971; 108:584–585
    [Google Scholar]
  29. Sijtsma L., Sterkenburg A., Wouters J.T.M. Properties of the cell walls of Lactococcus ladis ssp. cremoris SKI 10 and SKI 12 and their relation to bacteriophage resistance. Appl Environ Microbiol 1988; 54:2808–2811
    [Google Scholar]
  30. Ullmann W.W., Cameron J.A. Immunochemistry of the cell walls of Listeria monocytogenes. J Bacteriol 1969; 98:486–493
    [Google Scholar]
  31. Valyasevi R., Sandine W.E., Geller B.L. The bacteriophage kh receptor of Lactococcus lactis subsp. cremoris KH is the rhamnose of the extracellular wall polysaccharide. Appl Environ Microbiol 1990; 56:1882–1889
    [Google Scholar]
  32. Valyasevi R., Sandine W.E., Geller B.L. A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp lactis C2. J Bacteriol 1991; 173:6095–6100
    [Google Scholar]
  33. Valyasevi R., Sandine W.E., Geller B.L. Lactococcus lactis ssp lactis C2 bacteriophage Ski receptor involving rhamnose and glucose moieties in the cell wall. J Dairy Sci 1994; 77:1–6
    [Google Scholar]
  34. Watanabe K., Takesue S. Use of L-rhamnose to study irreversible adsorption of bacteriophage PL-1 to a strain of Lactobacillus casei. J Gen Virol 1975; 28:29–35
    [Google Scholar]
  35. Yokokura T. Phage receptor material in Lactobacillus casei cell wall 1 Effect of L-rhamnose on phage adsorption to the cell wall. Jpn J Microbiol 1971; 15:457–463
    [Google Scholar]
  36. Yokokura T. Phage receptor material in Lactobacillus casei. J Gen Microbiol 1977; 100:139–145
    [Google Scholar]
  37. Young F.E. Requirement of glucosylated teichoic acid for adsorption of phage in Bacillus subtilis 168. Proc Natl Acad Sci USA 1967; 58:2377–2384
    [Google Scholar]
  38. Zink R., Loessner M.J. Classification of virulent and temperate bacteriophages of Listeria spp. on the basis of morphology and protein analysis. Appl Environ Microbiol 1992; 58:296–302
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-142-4-985
Loading
/content/journal/micro/10.1099/00221287-142-4-985
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error