1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-4-721
1996-04-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/4/mic-142-4-721.html?itemId=/content/journal/micro/10.1099/00221287-142-4-721&mimeType=html&fmt=ahah

References

  1. Aitken A. 14-3-3 proteins on the MAP. Trends Biochem Sci 1995; 20:95–97
    [Google Scholar]
  2. Albertyn J., Hohmann S., Thevelein J.M., Prior B.A. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol reponse pathway. Mol Cell Biol 1994; 14:4135–4144
    [Google Scholar]
  3. André L., Hemming A., Adler L. Osmoregulation in Saccharomyces cerevisiae. Studies on the osmotic induction of glycerol production and glycerol 3-phosphate dehydrogenase (NAD+). FEBS Lett 1991; 286:13–17
    [Google Scholar]
  4. Blomberg A., Adler L. Physiology of osmotolerance in fungi. Adv Microbiol Physiol 1992; 33:143–212
    [Google Scholar]
  5. Blumer K.J., Johnson G.L. Diversity in function and regulation of MAP kinase pathways. Trends Biochem Sci 1994; 19:236–240
    [Google Scholar]
  6. Boorstein W.R., Craig E.A. Regulation of a yeast HSP70 gene by a cAMP responsive transcriptional control element. EMBO 1990; J9:2543–2553
    [Google Scholar]
  7. Brewster J.L., De Valoir T., Dwyer N.D., Winter E., Gustin M.C. An osmosensing signal transduction pathway in yeast. Science 1993; 259:1760–1763
    [Google Scholar]
  8. Cano E., Mahadevan L.C. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci 1995; 20:117–122
    [Google Scholar]
  9. Costigan C., Snyder M. SLK1, a yeast homolog of MAP kinase activators, has a RAS/cAMP-independent role in nutrient sensing. Mol fir Gen Genet 1994; 243:286–296
    [Google Scholar]
  10. Costigan C., Gehrung S., Snyder M. A synthetic lethal screening identifies SLK1, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth. Mol Cell Biol 1992; 12:1162–1178
    [Google Scholar]
  11. Csonka L.N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 1989; 53:121–147
    [Google Scholar]
  12. Csonka L.N., Hanson A.D. Prokaryotic osmoregulation. Genetics and physiology. Annu Rev Microbiol 1991; 45:569–606
    [Google Scholar]
  13. Cunningham K.W., Fink G.R. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J Cell Biol 1994a; 124:351–363
    [Google Scholar]
  14. Cunningham K.W., Fink G.R. Ca2+ transport in Saccharomyces cerevisiae. J Exp Biol 1994b; 196:157–166
    [Google Scholar]
  15. Cyert M.S., Thorner J. Regulatory subunit (CNB1 gene product) of yeast Ca2+/calmodulin-dependent phosphoprotein phosphatases is required for adaptation to pheromone. Mol Cell Biol 1992; 12:3460–3469
    [Google Scholar]
  16. Cyert M.S., Kunisawa R., Kaim D., Thorner J. Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase. Proc Natl Acad Sci USA 1991; 88:7376–7380
    [Google Scholar]
  17. De Virgilio C., Bürckert N., Bell W., Jenö P., Boiler T., Wiemken A. Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/ phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose 6-phosphate and loss of trehalose 6-phosphate phosphatase activity. Eur J Biochem 1993; 212:315–323
    [Google Scholar]
  18. Di Como C.J., Chang H., Arndt K.T. Activation of CEN1 and CLN2 G1 cyclin gene expression by BCK2. Mol Cell Biol 1995; 15:1835–1846
    [Google Scholar]
  19. Dubois M.-F., Bensaude O. MAP kinase activation during heat shock in quiescent and exponentially growing mammalian cells. FEBS Lett 1993; 324:191–195
    [Google Scholar]
  20. Engelberg D., Zandi E., Parker C.S., Karin M. The yeast and mammalian Ras pathways control transcription of heat shock genes independently of heat shock transcription factor. Mol Cell Biol 1994; 14:4929–4937
    [Google Scholar]
  21. Epstein C.B., Cross F.R. Genes that bypass the CLN requirement for Saccharomyces cerevisiae cell cycle START. Mol Cell Biol 1994; 14:2041–2047
    [Google Scholar]
  22. Estruch F., Carlson M. Two homologous zink finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:3872–3881
    [Google Scholar]
  23. Ferl R.J., Lu G., Bowen B.W. Evolutionary implications of the family of 14-3-3 brain protein homologs in Arabidopsis thaliana. Genética 1994; 92:129–138
    [Google Scholar]
  24. Gaber R.F., Styles C.A., Fink G.R. TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol 1988; 8:2848–2859
    [Google Scholar]
  25. Gaber R.F., Kielland-Brandt M.C., Fink G.R. HOL1 mutations confer novel ion transport in Saccharomyces cerevisiae. Mol Cell Biol 1990; 10:643–652
    [Google Scholar]
  26. Galcheva-Gargova Z., Dérijard B., Wu L.-H., Davis R.J. An osmosensing signal transduction pathway in mammalian cells. Science 1994; 265:806–808
    [Google Scholar]
  27. Garciadeblás B., Rubio F., Quintero F.J., Bañuelos M.A., Haro R., Rodríguez-Navarro A. Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol & Gen Genet 1993; 236:363–368
    [Google Scholar]
  28. Garrett-Engele P., Moilanen B., Cyert M.S. Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar H+-ATPase. Mol Cell Biol 1995; 15:4103–4114
    [Google Scholar]
  29. Gaxiola R., De Larrinoa I.F., Villalba J.M., Serrano R. A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. EMBO J 1992; 11:3157–3164
    [Google Scholar]
  30. Gounalaki N., Thireos G. Yaplp, a yeast transcriptional activator that mediates multidrug resistance, regulates the metabolic stress response. EMBO J 1994; 13:4036–4041
    [Google Scholar]
  31. Granot D., Snyder M. Glucose induces cAMP-independent growth-related changes in stationary-phase cells of Saccharomyces cerevisiae. Proc Natl Acad Sei USA 1991; 88:5724–5728
    [Google Scholar]
  32. Gustin M.C., Zhou X.-L., Martinac B., Kung C. A mechanosensitive ion channel in the yeast plasma membrane. Science 1988; 242:762–765
    [Google Scholar]
  33. Gustin M.C., Davenport K., Sohaskey M. Osmosensing signal transduction pathways. Yeast 1995; 11:SI7
    [Google Scholar]
  34. Han J., Lee J.-D., Bibbs L., Ulevitch R.J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 1994; 265:808–811
    [Google Scholar]
  35. Haro R., Garciadeblás B., Rodríguez-Navarro A. A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett 1991; 291:189–191
    [Google Scholar]
  36. Haro R., Bañuelos M.A., Quintero F.J., Rubio F., Rodríguez-Navarro A. Genetic basis of sodium exclusion and sodium tolerance in yeast A model for plants. Physiol Plant 1993; 89:868–874
    [Google Scholar]
  37. Hartley A.D., Ward M.P., Garrett S. The Yakl protein kinase of Saccharomyces cerevisiae moderates thermotolerance and inhibits growth by an Sch9 protein-kinase-independent mechanism. Genetics 1994; 136:465–474
    [Google Scholar]
  38. Herskowitz I. MAP kinase pathways in yeast: for mating and more. Cell 1995; 80:187–197
    [Google Scholar]
  39. Van Heusden G.P.H., Wenzel T.J., Langedijk E.L., Steensma H.Y., Van Der Berg J.A. Characterization of the yeast BMH1 gene encoding a putative protein homologous to mammalian protein kinase II activators and protein kinase C inhibitors. FEBS Lett 1992; 302:145–150
    [Google Scholar]
  40. Van Heusden G.P.H., Griffiths D.J.F., Ford J.C., Chin-A-Woeng T.F.C., Schrader P.A.T., Carr A.M., Steensma H.Y. The 14-3-3 proteins encoded by the BMH1 and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue. Eur J Biochem 1995; 229:45–53
    [Google Scholar]
  41. Hottiger T., De Virgilio C., Hall M.N., Boiler T., Wiemken A. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem 1994; 219:187–193
    [Google Scholar]
  42. Hughes D.A. Histidine kinases hog the limelight. Nature 1994; 369:187–188
    [Google Scholar]
  43. Iida H., Ohya Y., Anraku Y. Calmodulin-dependent protein kinase II and calmodulin are required for induced thermotolerance in Saccharomyces cerevisiae. Curr Genet 1995; 27:190–193
    [Google Scholar]
  44. Irie K., Takase M., Lee K.L., Levin D.E., Araki H., Matsumoto K., Oshima Y. MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C. Mol Cell Biol 1993; 13:3076–3083
    [Google Scholar]
  45. Iwahashi H., Obuchi K., Fujii S., Komatsu Y. The correlative evidence suggesting that trehalose stabilizes membrane structure in the yeast Saccharomyces cerevisiae. Cell Mol Biol 1995; 41:763–769
    [Google Scholar]
  46. Jones D.H., Ley S., Aitken A. Isoforms of 14-3-3 protein can form homo- and heterodimers in vivo and in vitro: implications for function as adapter proteins. FEBS Lett 1995; 368:55–58
    [Google Scholar]
  47. Kamada Y., Jung U.S., Piotrowski J., Levin D.E. The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes & Dev 1995; 9:1559–1571
    [Google Scholar]
  48. Ko C.H., Buckley A.M., Gaber R.F. TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae. Genetics 1990; 125:305–312
    [Google Scholar]
  49. Kobayashi N., McEntee K. Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:248–256
    [Google Scholar]
  50. Kosako H., Nishida E., Gotoh Y. cDNA cloning of MAP kinase kinase reveals kinase cascade pathways in yeasts to vertebrates. EMBO J 1993; 12:787–794
    [Google Scholar]
  51. Kuno T., Tanaka H., Mukai J.C., Chang C., Hiraga K., Miyakawa T., Tanaka C. cDNA cloning of a calcineurin B homolog in Saccharomyces cerevisiae. Biochem Biophys Ret Commun 1991; 180:1159–1163
    [Google Scholar]
  52. Kurtz S., Rossi J., Petko L., Lindquist S. An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis. Science 1986; 231:1154–1157
    [Google Scholar]
  53. Lange-Carter C.A., Pleiman C.M., Gardner A.M., Blumer K.J., Johnson J.L. A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 1993; 260:315–319
    [Google Scholar]
  54. Latterich M., Watson M.D. Isolation and characterization of osmosensitive vacuolar mutants of Saccharomyces cerevisiae. Mol Microbiol 1992; 5:2417–2426
    [Google Scholar]
  55. Lee K., Levin D.E. Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog. Mol Cell Biol 1992; 12:172–182
    [Google Scholar]
  56. Lee K., Hines L.K., Levin D.E. A pair of functionally redundant yeast genes (PPZ1 and PPZ2) encoding type 1-related protein phosphatases function within the PKC/-mediated pathway. Mol Cell Biol 1993a; 13:5843–5853
    [Google Scholar]
  57. Lee K., Irie K., Gotoh Y., Watanabe Y., Araki H., Nishida E., Matsumoto K., Levin D.E. A yeast mitogen-activated protein kinase homolog (Mpklp) mediates signalling by protein kinase C. Mol Cell Biol 1993b; 13:3067–3075
    [Google Scholar]
  58. Levin D.E., Bartlett-Heubusch E. Mutants in the T. cerevisiae PKC1 gene display a cell-cycle-specific osmotic stability defect. J Cell Biol 1992; 116:1221–1229
    [Google Scholar]
  59. Liu D., Bienkowska J., Petosa C., Collier R.J., Fu H., Liddington R. Crystal structure of the 2eta isoform of the 14-3-3 protein. Nature 1995; 376:191–194
    [Google Scholar]
  60. Liu Y., Ishii S., Tokai M., Tsutsumi H., Ohke O., Akada R., Tanaka K., Tsuchiya E., Fukui F., Miyakawa T. The Saccharomyces cerevisiae genes (CMP1 and CMP 2) encoding calmodulin-binding proteins homologous to the catalytic subunit of mammalian protein phosphatase 2B. Mol & Gen Genet 1991; 227:52–59
    [Google Scholar]
  61. Luyten K., Albertyn J., Skibbe F., Prior B.A., Ramos J., Thevelein J.M., Hohmann S. Fpsl, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and it is interactive under osmotic stress. EMBO 1995; J14:1360–1371
    [Google Scholar]
  62. Maeda T., Wurgler-Murphy S.M., Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 1994; 369:242–245
    [Google Scholar]
  63. Maeda T., Takekawa M., Saito H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 1995; 269:554–558
    [Google Scholar]
  64. Mager W.H., De Kruijff A.J.J. Stress-induced transcriptional activation. Microbiol Rev 1995; 59:506–531
    [Google Scholar]
  65. Mager W.H., Moradas-Ferreira P. Stress response of yeast. Biochem J 1993; 290:1–13
    [Google Scholar]
  66. Mager W.H., Varela J.C.S. Osmostress reponse of the yeast Saccharomyces cerevisiae. Mol Microbiol 1993; 10:253–258
    [Google Scholar]
  67. Marchler G., Schüller C., Adam G., Ruis H. A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 1993; 12:1997–2003
    [Google Scholar]
  68. Martín H., Arroyo J., Sánchez M., Molina M., Nombela C. Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37 °C. Mol & Gen Genet 1993; 241:177–184
    [Google Scholar]
  69. Martfnez-Pastor M.T., Estruch F. The Msn2 and Msn4 zinc finger transcriptional activators are required for the stress-induced expression of the small HSP genes. Yeast 1995; 11:S224–1
    [Google Scholar]
  70. Mazzoni C., Zarzov P., Rambourg A., Mann C. The SLT2 (MPK1) MAP kinase homolog is involved in polarized cell growth in Saccharomyces cerevisiae. J Cell Biol 1993; 123:1821–1833
    [Google Scholar]
  71. Mendoza I., Rubio F., Rodríguez-Navarro A., Pardo I.M. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J Biol Chem 1994; 269:8792–8796
    [Google Scholar]
  72. Nakamura T., Liu Y., Hirata D., Namba H., Harada S.-I., Hirokawa T., Miyakawa T. Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J 1993; 12:4063–4071
    [Google Scholar]
  73. Ota I.M., Varshavsky A. A yeast protein similar to bacterial two-component regulators. Science 1993; 262:566–569
    [Google Scholar]
  74. Paravicini G., Cooper M., Friedli L., Smith D.J., Carpentier J.-L., Klig L.S., Payton M.A. The osmotic integrity of the yeast cell requires a functional PKC1 gene product. Mol Cell Biol 1992; 12:4896–4905
    [Google Scholar]
  75. Parsell D.A., Kowall A.S., Singer M.A., Lindquist S. Protein disaggregation mediated by heat shock protein Hspl04. Nature 1994; 341:475–478
    [Google Scholar]
  76. Parsons W.J., Ramkumar V., Stiles G.L. Isobutyl-methylxanthine stimulates adenylate cyclase by blocking the inhibitory regulatory protein, Gt. Mol Pharmacol 1988; 34:37–41
    [Google Scholar]
  77. Posas F., Casamayor A., Ariño J. The PPZ protein phosphatases are involved in the maintenance of osmotic stability of yeast cells. FEBS Lett 1993; 318:282–286
    [Google Scholar]
  78. Posas F., Bollen M., Stalmans W., Ariño J. Biochemical characterization of recombinant yeast PPZ1, a protein phosphatase involved in salt tolerance. FEBS Lett 1995a; 368:39–44
    [Google Scholar]
  79. Posas F., Camps M., Ariño J. The PPZ protein phosphatases are important determinants of salt tolerance in yeast cells. J Biol Chem 1995b; 270:13036–13041
    [Google Scholar]
  80. Praekelt U.M., Meacock P.A. HYP12, a new small heat shock gene of Saccharomyces cerevisiae analysis of structure, regulation and function. Mol & Gen Genet 1990; 223:97–106
    [Google Scholar]
  81. Reed G., Nagodawithana T.W. Yeast Technology 1991 2nd edn New York: Van Nostrand Reinhold;
    [Google Scholar]
  82. Rodríguez-Navarro A., Ortega M.D. The mechanism of sodium efflux in yeast. FEBS Lett 1982; 138:205–208
    [Google Scholar]
  83. Rodríguez-Navarro A., 81 Ramos J. Dual system for potassium transport in Saccharomyces cerevisiae. I Bacteriol 1984; 159:940–945
    [Google Scholar]
  84. Rodríguez-Navarro A., Quintero F.J., Garciadeblás B. Na+-ATPases and Na+/Fl+ antiporters in fungi. Biochim Biophys Acta 1994; 1187:203–205
    [Google Scholar]
  85. Roemer T., Paravicini G., Payton M.A., Bussey H. Characterization of the yeast (1-β 6)-/i-glucan biosynthetic components, Kre6p and Sknlp, and genetic interactions between the PKC1 pathway and extracellular matrix assembly. J Cell Biol 1994; 127:567–579
    [Google Scholar]
  86. Rouse J., Cohen P., Trigon S., Morange M., Alonso-Llamazares A., Zamanillo D., Hunt T., Nebreda A.R. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 1994; 78:1027–1037
    [Google Scholar]
  87. Ruis H., Schuller C. Stress signaling in yeast. Bioessays 1995; 17:959–965
    [Google Scholar]
  88. Sanchez Y., Taulien J., Borkovich K.A., Lindquist S. Hspl04 is required for tolerance to many forms of stress. EMBO J 1992; 11:2357–2364
    [Google Scholar]
  89. Schuller C., Brewster J.L., Alexander M.R., Gustin M.C., Ruis H. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 1994; 13:4382–4389
    [Google Scholar]
  90. Shimizu J., Yoda K., Yamasaki M. The hypo-osmolarity-sensitive phenotype of the Saccharomyces cerevisiae hpo2 mutant is due to a mutation in PKC1, which regulates expression of yS-glucanase. Mol & Gen Genet 1994; 242:641–648
    [Google Scholar]
  91. Shiozaki K., Russell P. Counteractive roles of protein phosphatase 2C (PP2C) and a MAP kinase kinase homolog in the osmoregulation of fission yeast. EMBO J 1995; 14:492–502
    [Google Scholar]
  92. Terada Y., Tomita K., Homma M.K., Nonoguchi H., Yang T., Yamada T., Yuasa Y., Krebs E.G., Sasaki S., Marumo F. Sequential activation of Raf-1 kinase, mitogen-activated protein (MAP) kinase kinase, MAP kinase, and S6 kinase by hyperosmolarity in renal cells. J Biol Chem 1994; 269:31296–31301
    [Google Scholar]
  93. Thevelein J.M. Signal transduction in yeast. Yeast 1994; 10:1753–1790
    [Google Scholar]
  94. Thompson-Jaeger S., François J., Gaughran J.P., Tatchell K. Deletion of SNF1 affects the nutrient response of yeast and resembles mutations which activate the adenylate cyclase pathway. Genetics 1991; 129:697–706
    [Google Scholar]
  95. Toda T., Cameron S., Sass P., Zoller M., Scott J.D., McMullen B., Hurwitz M., Krebs E.G., Wigler M. Cloning and chracterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 1987; 7:1371–1377
    [Google Scholar]
  96. Torres L., Martin H., García-Saez M.I., Arroyo J., Molina M., Sánchez M., Nombela C. A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae lyt2 mutants. Mol Microbiol 1991; 5:2845–2854
    [Google Scholar]
  97. Varela J.C.S., Van Beekvelt C.A., Planta R.J., Mager W.H. Osmostress-induced changes in yeast gene expression. Mol Microbiol 1992; b:2183–2190
    [Google Scholar]
  98. Varela J.C.S., Praekelt U.M., Meacock P.A., Planta R.J., Mager W.H. The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol Cell Biol 1995; 15:6232–6245
    [Google Scholar]
  99. Vuorio O.E., Kalkkinen N., Londesborough J. Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur J Biochem 1993; 216:849–861
    [Google Scholar]
  100. Welihinda A.A., Beavis A.D., Trumbly R.J. Mutations in LIS 1 (ERG6) gene confer increased sodium and lithium uptake in Saccharomyces cerevisiae. Biochim Biophys Acta 1994; 1193:107–117
    [Google Scholar]
  101. Wiemken A. Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Leeuwenhoek 1990; 58:209–217
    [Google Scholar]
  102. Wright W.B., Howell E.A., Gaber R.F. Gain-of-function mutations in the HOL1 gene of Saccharomyces cerevisiae confer non-selective cation transport and abolish translational repression by a small upstream open reading frame. Mol Cell Biol 1996 (in press)
    [Google Scholar]
  103. Xiao B., Smerdon S.J., Jones D.H., Dodson G.G., Soneji Y., Aitken A., Gamblin S.J. Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature 1995; 376:188–194
    [Google Scholar]
  104. Yoshida S., Ohya Y., Goebl M., Nakano A., Anraku Y. A novel gene, STT4, encodes a phosphatidylinositol 4-kinase in the PKC1 protein kinase pathway of Saccharomyces cerevisiae. J Biol Chem 1994a; 269:1166–1172
    [Google Scholar]
  105. Yoshida S., Ohya Y., Nakano A., Anraku Y. Genetic interactions among genes involved in the STT4-PKC1 pathway of Saccharomyces cerevisiae. Mol & Gen Genet 1994b; 242:631–640
    [Google Scholar]
  106. Yoshida S., Ohya Y., Hirose R., Nakano A., Anraku Y. STT10, a novel class-D VPS yeast gene required for osmotic integrity related to the PKC1 /STT1 protein kinase pathway. Gene 1995; 160:117–122
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-142-4-721
Loading
/content/journal/micro/10.1099/00221287-142-4-721
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error