1887

Abstract

SUMMARY: The synthesis of deoxyribonucleic acid (DNA) in yeast can be abolished by dosages of ultraviolet light (UV) which permit ribonucleic acid (RNA) and protein synthesis to continue. Those dosages of UV which inhibit -glucosidase synthesis prevent not only the net utilization of the free amino acid pool but also inhibit glycine incorporation into proteins and decrease to a minimal value glycine and phosphate incorporation into RNA. The latent period before the appearance of -glucosidase was characterized by an increased sensitivity to irradiation and certain amino acid analogues. The significance of these results in an interpretation of the early stages in enzyme induction is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-14-1-26
1956-02-01
2024-11-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/14/1/mic-14-1-26.html?itemId=/content/journal/micro/10.1099/00221287-14-1-26&mimeType=html&fmt=ahah

References

  1. Anderson E.P., Aquist S. 1953; A double precursor study of nucleic acid turnover in normal and regenerating liver. J. biol. Chem. 202:513
    [Google Scholar]
  2. Barron L.S., Spiegelman S., Quaster H. 1953; Enzyme formation in nonviable cells. J. gen. Physiol. 36:631
    [Google Scholar]
  3. Borsook H. 1955; Mechanism of protein synthesis. Oak Ridge Conference on Enzyme and Protein Structure. J. cell. comp. Physiol. In the Press
    [Google Scholar]
  4. Cohen S. 1950; The anion-exchange separation of ribonucleotides. J. Amer. Chem. Soc. 72:1471
    [Google Scholar]
  5. Cohen S., Barner H. 1954; Enzymatic adaptation by a thymine-requiring mutant of E. coli. Fed. Proc. 13:193
    [Google Scholar]
  6. Edmonds M., Delluva A., Wilson D.W. 1952; The metabolism of purines and pyrimidines by growing yeast. J. biol. Chem. 197:251
    [Google Scholar]
  7. Gale E.F., Folkes J. 1953; The assimilation of amino acids by bacteria 15. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem. J. 53:493
    [Google Scholar]
  8. Gale E.F. 1955; From Amino Acids to Proteins. In Amino Acid Metabolism p. 171 McElroy W. D., Glass G. edited by Baltimore: The Johns Hopkins Press;
    [Google Scholar]
  9. Halvorson H., Fry W., Schwemmin D. 1955; A study of the properties of the free amino acid pool and enzyme synthesis in yeast. J. gen. Physiol. 38:549
    [Google Scholar]
  10. Halvorson H., Jackson L. 1954; The effect of ultraviolet light on the induced synthesis of maltase in yeast. Bact. Proc. p. 117
    [Google Scholar]
  11. Halvorson H., Spiegelman S. 1952; The inhibition of enzyme formation by amino acid analogues. J. Bact. 64:207
    [Google Scholar]
  12. Halvorson H., Spiegelman S. 1953; The effect of free amino acid pool levels on the induced synthesis of enzymes. J. Bact. 65:796
    [Google Scholar]
  13. Halvorson H., Spiegelman S., Hinman R. 1955; The effect of tryptophan analogues on the induced synthesis of maltase and protein synthesis in yeast. Arch. Biochem. Biophys. 55:512
    [Google Scholar]
  14. Hershey A.D. 1953; Nucleic acid economy in bacteria infected with bacteriophage T2. II. Phage precursors of nucleic acid. J. gen. Physiol. 37:1
    [Google Scholar]
  15. Hershey A.D., Dixon J., Chase M. 1953; Nucleic acid economy in bacteria infected with bacteriophage T2. I. Purine and pyrimidine composition. J. gen. Physiol. 36:777
    [Google Scholar]
  16. Hoagland M. 1955; Enzymatic mechanism for amino acid activation in animal tissue. Fed. Proc. 14:73
    [Google Scholar]
  17. Hogness D., Cohn M., Monod J. 1955; Induced synthesis of betagalactosidase in E. coli. Biochim. biophys. Acta 16:99
    [Google Scholar]
  18. Juni E., Kamen M., Reiner J., Spiegelman S. 1948; Turnover and distribution of phosphate compounds in yeast metabolism. Arch. Biochem. 18:387
    [Google Scholar]
  19. Kelner A. 1953; Growth, respiration and nucleic acid synthesis in ultraviolet-irradiated and in photoreactivated Escherichia coli. J. Bact. 65:252
    [Google Scholar]
  20. Klein G., Forssberg A. 1954; Studies on the effect of X-rays on the biochemistry and cellular composition of ascites tumors. I. Effect of growth rate, cell volume, nucleic acid, and nitrogen content in the Ehrlich ascites tumor. Exp. Cell Res. 6:211
    [Google Scholar]
  21. Luria S.E., Dulbecco R. 1949; Genetic recombinations leading to production of active bacteriophage from ultraviolet inactivated bacteriophage particles. Genetics 34:93
    [Google Scholar]
  22. Pardee A. 1954; Nucleic acid precursors and protein synthesis. Proc. nat. Acad. Sci., Wash. 40:263
    [Google Scholar]
  23. Pollock M.R. 1953; Stages in enzyme adaptation in Adaptation in micro-organisms. Symp. Soc. gen. Microbiol. 3:150
    [Google Scholar]
  24. Roberts R., Abelson P., Cowie D., Bolton E., Britten R. 1955; .Studies of biosynthesis in Escherichia coli. Washington, D.C.: Kerby Lithographic Co.;
    [Google Scholar]
  25. Rotman B., Spiegelman S. 1954; On the origin of the carbon in the induced synthesis of beta-galactosidase in Escherichia coli. J. Bact. 68:419
    [Google Scholar]
  26. Sher H.I., Mallette M.R. 1954; The adaptive nature of the formation of lysine decarboxylase in Escherichia coli. Arch. Biochem. Biophys. 52:331
    [Google Scholar]
  27. Spiegelman S., Halvorson H. 1954; On the role of the inducer in the synthesis of maltase in yeast. J. Bact. 68:265
    [Google Scholar]
  28. Spiegelman S., Halvorson H., Ben-Ishai R. 1955; Free amino acids and the enzyme-forming mechanism. In Amino acid Metabolism p. 124 edited by McElroy W. D., Glass G. Baltimore: The Johns Hopkins Press;
    [Google Scholar]
  29. Swenson P.A. 1950; The action spectrum of the inhibition of galactozymase production by ultraviolet light. Proc. nat. Acad. Sci., Wash. 36:699
    [Google Scholar]
  30. Swenson P.A., Giese A.G. 1950; Photoreactivation of galactozymase formation in yeast. J. cell. comp. Physiol. 36:369
    [Google Scholar]
  31. Umbreit W., Burris R.H., Stauffer J.F. 1949 Manometric Techniques and Tissue Metabolism p. 190 Minneapolis: Burgess Publishing Co.;
    [Google Scholar]
/content/journal/micro/10.1099/00221287-14-1-26
Loading
/content/journal/micro/10.1099/00221287-14-1-26
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error