1887

Abstract

Summary: During its stationary phase, produces the macrolide antibiotic spiramycin, and has to protect itself against this antibiotic. Young mycelia, not yet producing spiramycin, are sensitive to it, but they become fully resistant when production begins. In a sensitive mycelium, resistance could be induced by exposure to sub-inhibitory concentrations of spiramycin, and these induced mycelia, like producing mycelia were resistant not only to spiramycin but also to several other macrolide antibiotics. Ribosomes extracted from these resistant mycelia were shown to be more resistant to spiramycin than ribosomes extracted from sensitive mycelium, indicating that possesses a spiramycin-inducible ribosomal resistance to spiramycin and to macrolide antibiotics. Studies with spiramycin non-producing mutants showed that, in these mutants, resistance to spiramycin also varies during cultivation, in that an old culture was much more resistant than a young one. But with these non-producing mutants, the spectrum of resistance was narrower, and data showed that resistance was not due to ribosomal modification. These results suggest that presents at least two distinct mechanisms for spiramycin resistance; a spiramycin-inducible ribosomal resistance, and a second resistance mechanism which might be temporally regulated and which could involve decreased permeability to, or export of, the antibiotic. The two mechanisms are probably at work simultaneously in the producing mycelium, the spiramycin-inducible resistance being induced by endogenous spiramycin. In non-producing mutants, in the absence of self-induction by spiramycin, only the second mechanism is observed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-5-1003
1993-05-01
2021-07-26
Loading full text...

Full text loading...

References

  1. Baltz R. H., Seno E. T. 1988; Genetics of Streptomyces fradiae and tylosin biosynthesis. Annual Reviews in Microbiology 42:547–574
    [Google Scholar]
  2. Barthélémy P., Autissier D., Gerbaud G., Courvalin P. 1984; Enzymic hydrolysis of erythromycin by a strain of Escherichia coli. Journal of Antibiotics 37:1692–1696
    [Google Scholar]
  3. Beckmann R. J., Cox K., Seno E. T. 1989; A cluster of tylosin biosynthetic genes is interrupted by a structurally unstable segment containing four repeated sequences.. In Genetics and Molecular Biology of Industrial Microorganisms pp. 176–186 Hershberger S. W., Queenerg C. L. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Bibb M. J., Freeman R. F., Hopwood D. A. 1977; Physical and genetical characterisation of a second sex factor, SCP2, for Streptomyces coelicolor A32. Molecular and General Genetics 154:155–166
    [Google Scholar]
  5. Birmingham V. A., Cox K. L., Larson J. L., Fishman S. E., Hershberger C. L., Seno E. T. 1986; Cloning and expression of a tylosin resistance gene from a tylosin-producing strain of Streptom yces fradiae.. Molecular and General Genetics 204:532–539
    [Google Scholar]
  6. Cundliffe E. 1989a; How antibiotic-producing organisms avoid suicide. Annual Reviews in Microbiology 43:207–223
    [Google Scholar]
  7. Cundliffe E. 1989b; Methylation of RNA and resistance to antibiotics. In Microbial Resistance to Drugs pp. 227–248 Bryan L. E. Edited by Berlin: Springer-Verlag;
    [Google Scholar]
  8. Epp J. K., Bungett S. G., Schoner B. E. 1987; Cloning and nucleotide sequence of a carbomycin-resistance gene from Streptomyces thermotolerans. Gene 53:73–83
    [Google Scholar]
  9. Fierro J. F., Hardisson C., Salas J. A. 1987; Resistance to oleandomycin in Streptom yces antibioticus, the producer organism. Journal of General Microbiology 133:1931–1939
    [Google Scholar]
  10. Fierro J. F., Hardisson C., Salas J. A. 1988; Involvement of cell impermeability in resistance to macrolides in some producer streptomycetes. Journal of Antibiotics 41:142–144
    [Google Scholar]
  11. Fujisawa Y., Weisblum B. 198l; A family of r-determinants in Streptomyces ssp. that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. Journal of Bacteriology 146:621–631
    [Google Scholar]
  12. Gale E. F., Cundliffe E., Reynolds P. E., Richmond M. H., Waring M. J. 1981 The Molecular Basis of Antibiotic Action. London: Wiley;
    [Google Scholar]
  13. Hara O., Hutchinson C. R. 1990; Cloning of midecamycin (MLS)-resistance genes from Streptomyces mycarofaciens, Streptomyces lividans and Streptomyces coelicolor A32. Journal of Antibiotics 43:977–991
    [Google Scholar]
  14. Hopwood D. A., Bibb M. J., Chater K. F., Kirser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H. 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual. Norwich, UK: John Innes Foundation.;
    [Google Scholar]
  15. Jenkins G., Cundliffe E. 1991; Cloning and characterization of two genes from Streptomyces lividans that confer inducible resistance to lincomycin and macrolide antibiotics. Gene 108:55–62
    [Google Scholar]
  16. Kamimiya S., Weisblum B. 1988; Translational attenuation control of ermSF,an inducible resistance determinant encoding rRNA N-methyltransferase from Streptomyces fradiae. Journal of Bacteriology 170:1800–1811
    [Google Scholar]
  17. Kuo M.-S., Chirby D. G., Argoudelis A. D., Cialdella J. I., Coats J. H., Marshall V. P. 1989; Microbial glycosylation of Erythromycin A.. Antimicrobial Agents and Chemotherapy 33:2089–2091
    [Google Scholar]
  18. Leclercq R., Courvalin P. 1991; Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrobial Agents and Chemotherapy 35:1267–1272
    [Google Scholar]
  19. Marshall V. P., Cialdella J. I., Baczynskyj L., Liggett W. F., Johnson R. A. 1989; Microbial O-phosphorylation of macrolide antibiotics. Journal of Antibiotics 42:132–134
    [Google Scholar]
  20. Morgan E. A., Gregory S. T., Sigmund C. D., Borden A. 1988; Antibiotic resistance mutations in Escherichia coli ribosomal RNA genes and their uses.. In Genetics of Translation, New Approaches pp. 43–53 Tuite M. F., Picardm M., Bolotin-Fukuhara M. Edited by Berlin: Springer-Verlag;
    [Google Scholar]
  21. Omura S., Tanaka H. 1984; Production and antimicrobial activity of macrolides.. In Macrolide Antibiotics, Chemistry, Biology and Practice pp. 3–35 Omura S., Rnodet J. -L., Boccard F. Edited by London: Academic Press;
    [Google Scholar]
  22. Pernodt J. -L., Boccard F., Alegre M. -T., Blondelet-Rouault M. H., Guérineau M. 1988; Resistance to macrolides, lincosamides and streptogramin type B antibiotics due to a mutation in an rRNA operon of Streptom yces ambofaciens. The EMBO Journal 7:277–282
    [Google Scholar]
  23. Pinnert-Sindico S. 1954; Une nouvelle espèce de Streptomyces productrice d’antibiotiques: Streptomyces ambofaciens n. sp. caracteres culturaux. Annales de l’Institut Pasteur (Paris) 87:702–707
    [Google Scholar]
  24. Pridham T. G., Anderson P., Foley C., Lindenfelser L. A., Hesseltine C. W., Benetdict R. C. 1957; A selection of media for maintenance and taxonomic study of Streptomyces.. Antibiotics Annual 1956—1957947–953
    [Google Scholar]
  25. Richardson M. A., Kuhstoss S., Solenberg P., Schaus N. A., Rao R. N. 1987; A new shuttle cosmid vector, pKC505, for streptomycetes: its use in the cloning of three different spiramycin resistance genes from a Streptomyces ambofaciens library. Gene 61:231–241
    [Google Scholar]
  26. Ross J. I., Eady E. A., Cove J. H., Cunliffe W. J., Baumberg S., Wootton J. C. 1990; Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Molecular Microbiology 4:1207–1214
    [Google Scholar]
  27. Rosteck P. R., Rcynolds P. A., Hcrshberger C. L. 1991; Homology between proteins controlling Streptomyces fradiae tylosin resistance and ATP-binding transport. Gene 102:27–32
    [Google Scholar]
  28. Schoner B., Geistlich M., Rosteck P. Jr Rao R. N., Seno E., Reynolds P., Cox K., Burgett S., Hershberger C. 1992; Sequence similarity between macrolide-resistance determinants and ATP-binding transport proteins. Gene 115:93–96
    [Google Scholar]
  29. Skeggs P. A., Thompson J., Cundliffe E. 1985; Methylation of 16S ribosomal RNA and resistance to aminoglycoside antibiotics in clones of Streptomyces lividans carrying DNA from Streptomyces tenjimariensis. Molecular and General Genetics 200:415–421
    [Google Scholar]
  30. Skinner R., Cundliffe E., Schmidt F. J. 1983; Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. Journal of Biological Chemistry 258:12702–12706
    [Google Scholar]
  31. Smokvina T., Francou F., Luzzati M. 1988; Genetic analysis in Streptomyces ambofaciens. Journal of General Microbiology 134:395–402
    [Google Scholar]
  32. Uchiyama H., Weisblum B. 1985; N-Methyl transferase of Streptomyces erylhreus that confers resistance to the macrolide lincosamide-streptogramin B antibiotics: amino acid sequence and its homology to cognate R-factor enzymes from pathogenic bacilli and cocci. Gene 38:103–110
    [Google Scholar]
  33. Vilches C., Hernandez C., Mendez C., Salas J. A. 1992; Role of glycosylation and deglycosylation in biosynthesis of and resistance to oleandomycin in the producer organism Streptomyces antibioticus. Journal of Bacteriology 174:161–165
    [Google Scholar]
  34. Weisblum B. 1983; Inducible resistance to Macrolides, Lincosamides, and Streptogramin type-B antibiotics: the resistance phenotype, its biological diversity, and structural element that regulate expression.. In Gene Function in Prokaryotes pp. 91–121 Beckwith J., Davies J., Gallant A. Edited by Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  35. Wittmann H. G., Stöffler G., Apirion D., Rosen L., Tanaka K., Tamaki M., Takata R., Dekio S., Otaka E., Osawa S. 1973; Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins. Molecular and General Genetics 127:175–189
    [Google Scholar]
  36. Zalacain M., Cundliffe E. 1989; Methylation of 23S rRNA caused by tlrA (ermSF), a tylosin resistance determinant from Streptomyces fradiae. Journal of Bacteriolog y 171:4254–4260
    [Google Scholar]
  37. Zalacain M., Cundliffe E. 1990; Methylation of 23S ribosomal RNA due to carB,an antibiotic-resistance determinant from the carbomycin producer, Streptomyces thermotolerans. European Journal of Biochemistry 189:67–72
    [Google Scholar]
  38. Zalacain M., Cundliffe E. 1991; Cloning of tlrD,a fourth resistance gene, from the tylosin producer Streptomyces fradiae. Gene 97:137–142
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-5-1003
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error