1887

Abstract

The DNA sequence of the gene encoding the early and specific immunogenic protein P36 of has been determined. Comparison of the DNA sequence and the deduced amino acid sequence of P36 with known genes and proteins in data banks indicated that P36 is a -lactate dehydrogenase (LDH) (EC 1.1.1.27). Biochemical analysis of protein P36 expressed from the cloned gene in confirmed that P36 has -lactate dehydrogenase activity. Protein P36 of therefore is termed LDH and its gene LDH was shown to containthe typical domains of LDH of other bacterial species. Immunologically however, we have shown that polyclonal antibodies against LDH do not cross-react with related LDH and show high specificity for . The gene is preceded by several typical −10 sequences found in promoters of prokaryotes, but lacks the −35 sequence. Sequences rich in A + T, however, precede the −10 boxes, suggesting that factors involved in transcription initiation and their regulation may be different in compared to other bacterial species, but the putative ribosome binding site seems to be conserved.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-2-317
1993-02-01
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/2/mic-139-2-317.html?itemId=/content/journal/micro/10.1099/00221287-139-2-317&mimeType=html&fmt=ahah

References

  1. Brooks E., Faulds D. 1989; The Mycoplasma hyopneumoniae 74-5-kD antigen elicits neutralizing antibodies and shares sequence similarity with heat-shock proteins. In Vaccines 89 pp. 265–269 Lemer R.A., Ginsberg H., Chanock R.M., Brown F. Edited by New York: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  2. Bullock W.O., Fernandez J.M., Short J.M. 1987; XLl-blue: a high efficiency plasmid transforming recA E. coli strain with beta-galactosidase selection. Biotechniques 5:376–379
    [Google Scholar]
  3. Clyde W.A. 1983; Growth inhibition tests. In Methods in Mycoplasmology I pp. 405–410 Razin S., Tully J.G. Edited by London: Academic Press;
    [Google Scholar]
  4. Fairoz M.J, Kiswar Y.A., Clark D.P. 1989; Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase. Journal of Bacteriology 171:342–348
    [Google Scholar]
  5. Ferrell R.V., Heidari M.B., Wise K.S., McIntosh M.A. 1989; A mycoplasma genetic element resembling prokaryotic insertion sequences. Molecular Microbiology 3:957–967
    [Google Scholar]
  6. Foster J.W. 1991; Salmonella acid shock proteins are required for the adaptive acid tolerance response. Journal of Bacteriology 173:6896–6902
    [Google Scholar]
  7. Friis M.F. 1971; Sensitivity of Mycoplasma suipneumoniae to penicillin-G. Acta Veterinaria Scandinavica 12:120–121
    [Google Scholar]
  8. Garvie E.I. 1980; Bacterial lactate dehydrogenases. Microbiological Reviews 44:106–139
    [Google Scholar]
  9. Geary S.J., Walczak E.M. 1985; Isolation of a cytopathic factor from Mycoplasma hyopneumoniae. Infection and Immunity 48:576–578
    [Google Scholar]
  10. Harasawa R., Koshimizu K., Takeda O., Uemori T., Asada K., Kato I. 1991; Detection of Mycoplasma hyopneumoniae DNA by the polymerase chain reaction. Molecular and Cellular Probes 5:103–109
    [Google Scholar]
  11. Hediger M.A., Frank G., Zuber H. 1986; Structure and function of l-lactate dehydrogenases from thermophilic and mesophilic bacteria, IV: The primary structure of the mesophilic lactate dehydrogenase from Bacillus subtilis. Biological Chemistry Hoppe-Seyler 367:891–903
    [Google Scholar]
  12. Hensel R., Mayr U., Yang C.Y. 1983; The complete primary structure of the allosteric L-lactate dehydrogenase from Lactobacillus casei. European Journal of Biochemistry 134:503–511
    [Google Scholar]
  13. Hopp T.P., Woods K.R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences of the United States of America 78:3824–3828
    [Google Scholar]
  14. Kiltz H., Keil W., Griesbach M., Meyer H. 1977; The primary structure of porcine lactate dehydrogenase: Isoenzymes M4 and H4. Hoppe-Seyler’S Zeitschrift für Physiologische Chemie 358:123–127
    [Google Scholar]
  15. Kim M.F., Heidari M.B., Stull S.J., McIntosh M.A., Wise K.S. 1990; Identification and mapping of an immunogenic region of Mycoplasma hyopneumoniae p65 surface lipoprotein expressed in Escherichia coli from a cloned genomic fragment. Infection and Immunity 58:2637–2643
    [Google Scholar]
  16. Klinkert M.Q., Taschke C., Schaller H., Herrmann R. 1986; Identification of Mycoplasma hyopneumoniae proteins from an Escherichia coli expression library and analysis of transcription and translation signals. In Protein-Carbohydrate Interactions in Biological Systems pp. 369–374 Lark D.L. Edited by London: Academic Press;
    [Google Scholar]
  17. Kunai K., Machida M., Matsuzawa H., Ohta T. 1986; Nucleotide sequence and characteristics of the gene for l-lactate dehydrogenase of Thermus caldophilus GK24 and the deduced amino acid sequence of the enzyme. European Journal of Biochemistry 160:433–440
    [Google Scholar]
  18. Manolukas J.T., Barile M.F., Chandler D.K.F., Pollack J.D. 1988; Presence of anaplerotic reactions and transamination, and the absence of the tricarboxylic acid cycle in mollicutes. Journal of General Microbiology 134:791–800
    [Google Scholar]
  19. Mori Y., Hamaoka T., Sato S., Takeuchi S. 1988; Immunoblotting analysis of antibody response in swine experimentally inoculated with Mycoplasma hyopneumoniae.. Veterinary Immunology and Immunopathology 19:239–250
    [Google Scholar]
  20. Needleman S.B., Wunsch C.D. 1970; A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48:443–453
    [Google Scholar]
  21. Ono M., Matsuzawa H., Ohta T. 1990; Nucleotide sequence and characteristics of the gene for l-lactate dehydrogenase of Thermus aquaticus YT-1 and the deduced amino acid sequence of the enzyme. Journal of Biochemistry 107:21–26
    [Google Scholar]
  22. Rose D.L., Tully J.G., Wittler R.G. 1979; Taxonomy of some swine mycoplasmas: Mycoplasma suipneumoniae Goodwin et al. 1965, a later, objective synonym of Mycoplasma hyopneumoniae Mare and Switzer 1965, and the status of Mycoplasma flocculare Meyling and Friis 1972. International Journal of Systematic Bacteriology 29:83–91
    [Google Scholar]
  23. Rosenberg M., Court D. 1979; Regulatory sequences involved in the promotion and termination of RNA transcription. Annual Review of Genetics 14:319–359
    [Google Scholar]
  24. Ross R.F. 1992; Mycoplasmal diseases. In Diseases of Swine, 7th ed.. pp. 537–551 Leman A.D., Straw B.E., Mengeling W.L., D’Allaire S., Taylor D.J. Edited by Ames: Iowa State University Press;
    [Google Scholar]
  25. Sakai I., Sharief F.S., Pan Y.C.E., Li S.L. 1987; The cDNA and protein sequences of human lactate dehydrogenase B. Biochemical Journal 248:933–936
    [Google Scholar]
  26. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd ed.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  27. Sanger F., Nicklen S., Coulsen A.R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  28. Shine J., Dalgarno L. 1974; The 3ʹ terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proceedings of the National Academy of Sciences of the United States of America 71:1342–1346
    [Google Scholar]
  29. Slonczewski J.L., Gonzalez T.N., Bartholomew F.M., Holt N.J. 1987; Mud-directed lacZ fusions regulated by low pH in Escherichia coli. Journal of Bacteriology 169:3001–3006
    [Google Scholar]
  30. Stemke G.W., McIntyre D.J., Roy K.L., Stemler M.E., Robertson J.A. 1985; Guanine-plus-cytosine compositions of, and deoxyribonucleic acid hybridization comparisons between, Mycoplasma hyopneumoniae and Mycoplasma flocculare. . International Journal of Systematic Bacteriology 35:527–529
    [Google Scholar]
  31. Stipkovits L., Nicolet J., Haldimann A., Frey J. 1991; Use of antibodies against the P36 protein of Mycoplasma hyopneumoniae for the identification of M. hyopneumoniae strains. Molecular and Cellular Probes 5:451–457
    [Google Scholar]
  32. Strasser M., Frey J., Bestetti G., Kobisch M., Nicolet J. 1991; Cloning and expression of a species-specific early immunogenic 36-kilodalton protein of Mycoplasma hyopneumoniae in Escherichia coli. Infection and Immunity 59:1217–1222
    [Google Scholar]
  33. Taschke C., Herrmann R. 1986; Analysis of transcription and processing signals of the 16S-23S rRNA operon of Mycoplasma hyopneumoniae. Molecular and General Genetics 434:441
    [Google Scholar]
  34. Taschke C., Klinkert M.Q., Wolters J., Herrmann R. 1986; Organization of the ribosomal RNA genes in Mycoplasma hyopneumoniae-. The 5S rRNA gene is separated from the 16S and 23S rRNA genes. Molecular and General Genetics 205:428–433
    [Google Scholar]
  35. Taschke C., Ruland K., Herrmann R. 1987; Nucleotide sequence of the 16S rRNA of Mycoplasma hyopneumoniae.. Nucleic Acids Research 15:3918
    [Google Scholar]
  36. Taylor-Robinson D. 1983; Metabolism inhibition tests.. In Methods in Mycoplasmology pp. 411–417 Razin S., Tully J.G. Edited by London: Academic Press;
    [Google Scholar]
  37. Tinoco I., Borer P.N., Dengler B., Levine M.D., Uhlenbeck O., Crothers D., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nature; London: 24640–41
    [Google Scholar]
  38. Tsujibo H., Tiano H.F., Li S.L. 1985; Nucleotide sequences of the cDNA and an intronless pseudogene for human lactate dehydrogenase-A isozyme. European Journal of Biochemistry 147:9–15
    [Google Scholar]
  39. Weisburg W.G., Tully J.G., Rose D.L., Petzel J.P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T.G., Van Etten J., Maniloff J., Woese C.R. 1989; A phylogenetic analysis of the mycoplasmas: Basis for their classification. Journal of Bacteriology 171:6455–6467
    [Google Scholar]
  40. Wirz B., Suter F., Zuber H. 1983; Structure and function of l-lactate dehydrogenases from thermophilic and mesophilic bacteria, III: The primary structure of thermophilic lactate dehydrogenase from Bacillus stearothermophilus. Hydroxylamine-, o-iodosobenzoic acid- and tryptic-fragments. The complete amino acid sequence. Hoppe-Seyler’s Zeitschrift für Physiologische Chemie 364:893–909
    [Google Scholar]
  41. Yamao F., Muto A., Kawauchi Y., Iwami M., Iwagami S., Azumi Y., Osawa S. 1985; UGA is read as tryptophan in Mycoplasma capricolum. Proceedings of the National Academy of Sciences of the United States of America 82:2306–2309
    [Google Scholar]
  42. Young T.F., Ross R.F. 1987; Assessment of antibody response of swine infected with Mycoplasma hyopneumoniae by immunoblotting. American Journal of Veterinary Research 48:651–656
    [Google Scholar]
  43. Zhang H., Scholl R., Browse J., Sommerville C. 1988; Double stranded DNA sequencing as a choice for DNA sequencing. Nucleic Acids Research 16:1220
    [Google Scholar]
  44. Zülli F., Weber H., Zuber H. 1987; Structure and function of l-lactate dehydrogenases from thermophilic and mesophilicbacteria Nucleotide sequences of lactate dehydrogenase genes from the thermophilic bacteria Bacillus stearothermophilu caldolyticusand B. caldotenax.. Biological Chemistry Hoppe-Seyler 368:1167–1177
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-2-317
Loading
/content/journal/micro/10.1099/00221287-139-2-317
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error