1887

Abstract

The and genes from have been isolated and characterized, and their nucleotide sequence has been determined. The gene encodes the lactose-specific Enzyme II component of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). The gene encodes the phospho--galactosidase which cleaves the lactose phosphate that is formed by the lactose PTS. The and genes are located in the same operon as the tagatose genes. metabolizes lactose via the tagatose phosphate pathway. The deduced LacE and LacG proteins of display high homology with the corresponding proteins from and

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-11-2685
1993-11-01
2021-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/11/mic-139-11-2685.html?itemId=/content/journal/micro/10.1099/00221287-139-11-2685&mimeType=html&fmt=ahah

References

  1. Alpert C.-A., Chassy B. M. 1988; Molecular cloning and nucleotide sequence of the factor IIIlac gene of Lactobacillus casei. Gene 62:277–288
    [Google Scholar]
  2. Alpert C.-A., Chassy B. M. 1990; Molecular cloning and DNA sequence of lacE, the gene encoding the lactose-specific Enzyme II of the phosphotransferase system of Lactobacillus casei. Journal of Biological Chemistry 265:22561–22568
    [Google Scholar]
  3. Bisset D., Anderson R. L. 1973; Lactose and d-galactose metabolism in Staphylococcus aureus: pathway of d-galactose 6-phosphate degradation. Biochemical and Biophysical Research Communications 52:641–647
    [Google Scholar]
  4. Bisset D., Anderson R. L. 1974; Genetic evidence for the physiological significance of the d-tagatose 6-phosphate pathway of lactose and d-galactose degradation in Staphylococcus aureus. Journal of Bacteriology 119:698–704
    [Google Scholar]
  5. Breidt F. Jr Stewart G. C. 1987; Nucleotide and deduced amino acid sequences of the Staphylococcus aureus phospho-beta-galactosidase gene. Applied and Environmental Microbiology 53:969–973
    [Google Scholar]
  6. Breidt F. Jr Hengstenberg W., Finkeldei U., Stewart G. C. 1987; Identification of the genes for the lactose-specific components of the phosphotransferase system in the lac operon of Staphylococcus aureus. Journal of Biological Chemistry 262:16444–16449
    [Google Scholar]
  7. Chen E. J., Seeburg P. H. 1985; Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  9. De Vos W. M. 1987; Gene cloning and expression in lactic streptococci. FEMS Microbiological Reviews 46:281–295
    [Google Scholar]
  10. De Vos W. M., Gasson M. J. 1989; Structure and expression of the Lactococcus lactis gene for phospho-beta-galactosidase (lacG) in Escherichia coli and L. lactis. Journal of General Microbiology 135:1833–1846
    [Google Scholar]
  11. De Vos W. M., Boerrigter I., Van Rooyen R. J., Reidhe B., Hengstenberg W. 1990; Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis. Journal of Biological Chemistry 265:22554–22560
    [Google Scholar]
  12. Drucker D. B., Melville T. H. 1968; Fermentation end-products of cariogenic and non-cariogenic streptococci. Archives of Oral Biology 13:565–570
    [Google Scholar]
  13. Frostell G., Keyes P. H., Larson R. H. 1967; Effect of various sugars and sugar substitutes on dental caries in hamsters and rats. Journal of Nutrition 93:65–76
    [Google Scholar]
  14. Guggenheim B., Konig K. G., Herzog E., Muhlemann H. R. 1966; The cariogenicity of different dietary carbohydrates tested on rats in relative gnotobiosis with a streptococcus producing extracellular polysaccharide. Helvetica Odontologica Acta 10:101–113
    [Google Scholar]
  15. Hamada S., Slade H. D. 1980; Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiological Reviews 44:331–384
    [Google Scholar]
  16. Hamilton I. R., Lebtag H. 1979; Lactose metabolism by Streptococcus mutans: evidence for induction of the tagatose 6-phosphate pathway. Journal of Bacteriology 140:1102–1104
    [Google Scholar]
  17. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359
    [Google Scholar]
  18. Jagusztyn-Krynicka E. K., Hansen J. B., Crow V. L., Thomas T. D., Honeyman A. L., Curtiss R. III 1992; Streptococcus mutans serotype c tagatose 6-phosphate gene cluster. Journal of Bacteriology 174:6152–6158
    [Google Scholar]
  19. Macrina F. L., Evans R. P., Tobian J. A., Hartley D. L., Clewell D. B., Jones K. R. 1983; Novel shuttle plasmid vehicles for Escherichia-Streptococcus transgeneric cloning. Gene 25:145–150
    [Google Scholar]
  20. Manoil C., Beckwith J. 1985; TnphoA: a transposon probe for protein export signals. Proceedings of the National Academy of Sciences of the United States of America 82:8129–8133
    [Google Scholar]
  21. Maxwell E. S., Kurahashi K., Kalckar H. M. 1962; Enzymes of the Leloir pathway. Methods in Enzymology 5:174–189
    [Google Scholar]
  22. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Moran C. P. Jr Lang N., Legrice S., Lee G., Stephens M., Sonenshein A. L., Pero J., Losick R. 1982; Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Molecular and General Genetics 186:339–346
    [Google Scholar]
  24. Murchison H., Larrimore S., Curtiss R. III 1981; Isolation and characterization of Streptococcus mutans mutants defective in adherence and aggregation. Infection and Immunity 34:1044–1055
    [Google Scholar]
  25. Murchison H. H., Barrett J. F., Cardineau G. A., Curtiss R. III 1986; Transformation of Streptococcus mutans with chromosomal and shuttle plasmid (pYA629 DNAs. Infection and Immunity 54:273–282
    [Google Scholar]
  26. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences of the United States of America 85:2444–2448
    [Google Scholar]
  27. Porter E. V., Chassy B. M. 1988; Nucleotide sequence of the beta-d-phosphogalactoside galactohydrolase gene of Lactobacillus casei: comparison to analogous pbg genes of other Gram-positive organisms. Gene 62:263–276
    [Google Scholar]
  28. Postma P. W., Lengeler J. W. 1985; Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiological Reviews 49:232–269
    [Google Scholar]
  29. Rosey E. L., Stewart G. C. 1992; Nucleotide and deduced amino acid sequences of the lacR, lacABCD, and lacFE genes encoding the repressor, tagatose 6-phosphate gene cluster, and sugar-specific PTS components of the lactose operon of Streptococcus mutans. Journal of Bacteriology 174:6159–6170
    [Google Scholar]
  30. Rosey E. L., Oskouian B., Stewart G. C. 1991; Lactose metabolism by Staphylococcus aureus: characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway. Journal of Bacteriology 173:5992–5998
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning. A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Smorawinska M., Hsu J. C., Hansen J. B., Jagusztyn-Krynicka E. K., Abiko Y., Curtiss R. III 1983; Clustered genes for galactose metabolism from Streptococcus mutans cloned in Escherichia coli. Journal of Bacteriology 153:1095–1097
    [Google Scholar]
  33. Southern E. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  34. Tabor S., Richardson C. C. 1987; DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America 84:4767–4771
    [Google Scholar]
  35. Van Rooijen R. J., Van Schalkwijk S., De Vos W. M. 1991; Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. Journal of Biological Chemistry 266:7176–7181
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-11-2685
Loading
/content/journal/micro/10.1099/00221287-139-11-2685
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error