1887

Abstract

NCIB 6346 utilized glucose in preference to maltose when both sugars were present in the growth medium. Addition of glucose to a culture growing on maltose resulted in inhibition of maltose uptake and an immediate cessation of maltose metabolism. The mechanism of maltose transport was examined in whole cells and cell extracts. Phosphoenolpyruvate did not stimulate phosphorylation of maltose, indicating the absence of a phosphotransferase system. However, the presence of a maltose phosphorylase enzyme was suggested by phosphorylation of the sugar in the presence of inorganic phosphate. Maltose accumulation was strongly inhibited by proton conducting uncouplers, and was driven by an artificial transmembrane pH gradient, inside alkaline. These results imply that maltose is transported by a proton symport mechanism in this bacterium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-9-1821
1992-09-01
2021-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/9/mic-138-9-1821.html?itemId=/content/journal/micro/10.1099/00221287-138-9-1821&mimeType=html&fmt=ahah

References

  1. Booth I. R. 1988; Bacterial transport: energetics and mechanisms. In Bacterial Energy Transduction pp. 377–428 Edited by Anthony. New York: Academic Press;
    [Google Scholar]
  2. Chalumeau H., Delobbe A., Gay P. 1978; Biochemical and genetic study of D-glucitol transport and catabolism in Bacillus subtilis. Journal of Bacteriology 134:920–928
    [Google Scholar]
  3. Dean D. A., Davidson A. L., Nikaido H. 1989; Maltose transport in membrane vesicles of Escherichia coli is linked to ATP hydrolysis. Proceedings of the National Academy of Sciences of the United States of America 86:9134–9138
    [Google Scholar]
  4. Fisher S. H., Sonenshein A. L. 1991; Control of carbon and nitrogen metabolism in Bacillus. Annual Review of Microbiology 45:107–135
    [Google Scholar]
  5. Gachelin 1969; A new assay of the phosphotransferase system in Escherichia coli. Biochemical and Biophysical Research Communications 34:382–387
    [Google Scholar]
  6. Gay P., Cordier P., Marquet M., Delobbe A. 1973; Carbohydrate metabolism and transport in Bacillus subtilis. A study of ctr mutations. Molecular and General Genetics 121:355–368
    [Google Scholar]
  7. Gonzy-Tréboul G., De Waard J. H., Zagorec M., Postma P. W. 1991; The glucose permease of the phosphotransferase system of Bacillus subtilis: evidence for IIglc and IIIglc domains. Molecular Microbiology 5:1241–1249
    [Google Scholar]
  8. Hengge R., Boos W. 1983; Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport systems. Biochimica et Biophysica Acta 737:443–478
    [Google Scholar]
  9. Higgins C. F., Hiles I. D., Whalley K., Jamieson D. J. J. 1985; Nucleotide binding by membrane components of bacterial peri-plasmic binding protein-dependent transport systems. EMBO Journal 4:1033–1040
    [Google Scholar]
  10. Kimmich G. A., Randles J., Brand J. S. 1975; Assay of picomole amounts of ATP, ADP and AMP using the luciferase enzyme system. Analytical Biochemistry 69:187–206
    [Google Scholar]
  11. Klier A. F., Rapoport G. 1988; Genetics and regulation of carbohydrate catabolism in Bacillus. Annual Review of Microbiology 42:65–95
    [Google Scholar]
  12. Kornberg H. L., Miller E. K. 1972; Role of phosphoenol-pyruvate-phosphotransferase in glucose utilization by bacilli. Proceedings of the Royal Society of London B182:171–181
    [Google Scholar]
  13. Lacks S. 1968; Genetic regulation of maltosaccharide utilization in pneumococcus. Genetics 60:685–706
    [Google Scholar]
  14. McKillen M. N., Rountree J. H. 1973; D-Gluconate transport in Bacillus subtilis. Biochemical Society Transactions 1:442–445
    [Google Scholar]
  15. Martin S. A., Russell J. B. 1987; Transport and phosphorylation of disaccharides by the ruminal bacterium Streptococcus bovis. Applied and Environmental Microbiology 53:2388–2393
    [Google Scholar]
  16. Martin S. A., Russell J. B. 1988; Mechanisms of sugar transport in the rumen bacterium Selenomonas ruminantium. Journal of General Microbiology 134:819–827
    [Google Scholar]
  17. Meadow N. M., Fox D. K., Roseman S. 1990; The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annual Review of Biochemistry 59:497–542
    [Google Scholar]
  18. Mitchell W. J., Booth I. R. 1984; Characterization of the Clostridium pasteurianum phosphotransferase system. Journal of General Microbiology 130:2193–2200
    [Google Scholar]
  19. Moore J., Priest F. G. 1987; Synthesis of two distinct α-glucosidase activities in Bacillus licheniformis. Letters in Applied Microbiology 4:1–3
    [Google Scholar]
  20. Perego M., Higgins C. F., Pearce S. R., Gallacher M. P., Hoch J. A. 1991; The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Molecular Microbiology 5:173–185
    [Google Scholar]
  21. Reizer J., Novotny M. J., Stuiver I., Saier M. H. Jr 1984; Regulation of glycerol uptake by the phosphoenolpyruvate–sugar phosphotransferase system in Bacillus subtilis. Journal of Bacteriology 159:243–250
    [Google Scholar]
  22. Reizer J., Saier M. H. Jr, Deutscher J., Greiner F., Thompson J., Hengstenberg W. 1988; The phosphoenolpyruvate: sugar phosphotransferase system in Gram-positive bacteria: properties, mechanism, and regulation. CRC Critical Reviews in Microbiology 15:297–338
    [Google Scholar]
  23. Roohi M. S., Mitchell W. J. 1987; Regulation of sorbitol metabolism by glucose in Clostridium pasteurianum: a role for inducer exclusion. Journal of General Microbiology 133:2207–2215
    [Google Scholar]
  24. Saier M. H. Jr 1989; Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiological Reviews 53:109–120
    [Google Scholar]
  25. Serrano R. 1977; Energy requirements for maltose transport in yeast. European Journal of Biochemistry 80:97–102
    [Google Scholar]
  26. Stewart L. M. D., Bakker E. P., Booth I. R. 1985; Energy coupling to K+ uptake via the Trk system in Escherichia coli: the role of ATP. Journal of General Microbiology 131:77–85
    [Google Scholar]
  27. Taylor D. C., Costilow R. N. 1977; Uptake of glucose and maltose by Bacillus popilliae. Applied and Environmental Microbiology 34:102–104
    [Google Scholar]
  28. Thirunavukkarasu M., Priest F. G. 1980; Regulation of amylase synthesis in Bacillus licheniformis NCIB 6346. FEMS Microbiology Letters 7:315–318
    [Google Scholar]
  29. Wiesmeyer H., Cohn M. 1960; The characterization of the pathway of maltose utilization by Escherichia coli. II. General properties and mechanism of action of amylomaltase. Biochimica et Biophysica Acta 39:427–439
    [Google Scholar]
  30. Wursch P., Koellreuter B. 1985; Maltotriitol inhibition of maltose metabolism in Streptococcus mutans via maltose transport, amylomaltase and phospho α-glucosidase activities. Caries Research 19:439–449
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-9-1821
Loading
/content/journal/micro/10.1099/00221287-138-9-1821
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error