1887

Abstract

SUMMARY: Sixty-two mutants of the filamentous fungus were isolated on the basis of resistance to the antimetabolite fluoroacetate. Of these, 14 were unable to use acetate as sole carbon source (acetate non-utilizers, ) and were the subject of further genetic and biochemical analysis. These mutants fell into four complementation groups, three of which did not complement any known mutants. Mutants of complementation group 3 failed to complement , demonstrated similar phenotypic properties and proved to be closely linked (less than 2% recombination) but not allelic. Representatives of groups 2 and 4 were mapped to independent loci; the single representative of group 1 could not be mapped. The four complementation groups were therefore designated as genes to respectively. All the mutants demonstrated normal acetate-induced expression of acetyl-CoA synthetase and the unique enzymes of the glyoxylate cycle and gluconeogenesis. The nature of these mutations is therefore quite different to those reported for other fungal species. Mutant was unable to fix labelled acetate, indicating the loss of an initial transport function; partial enzyme lesions were observed for (acetyl-CoA hydrolase) and (acetate-inducible NAD-specific malate dehydrogenase).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-12-2599
1992-12-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/12/mic-138-12-2599.html?itemId=/content/journal/micro/10.1099/00221287-138-12-2599&mimeType=html&fmt=ahah

References

  1. Apirion D. ( 1965;). The two way selection of mutants and revertants in respect of acetate utilization and resistance to fluoroacetate in Aspergillus nidulans. . Genetics Research 6, 317-329.
    [Google Scholar]
  2. Armitt S., Mccullough W. & Roberts C.R. ( 1976;). Analysis of acetate non-utilizing (acu) mutants in Aspergillus nidulans.. Journal of General Microbiology 92, 263-282.
    [Google Scholar]
  3. Baptista-Ferreira J. L. C. & Celton L. A. ( 1983;). An allele map oftheacu-1 gene of Coprinuscinereus. . Revista de Biologia 12, 187-196.
    [Google Scholar]
  4. Barth G. ( 1985;). Genetic regulation of isocitrate lyase in the yeast. Yarrowia lipolitica. Current Genetics 10, 119-124.
    [Google Scholar]
  5. Beever R. E. ( 1975;). Regulation of 2-phosphoenolpyruvate kinase and isocitrate lyase in Neurospora crassa. . Journal of General Microbiology 86, 197-200.
    [Google Scholar]
  6. Cambareri E. B., Jensen B. C., Schabtach E. & Selker E. U. ( 1989;). Repeat-induced GC-+AT mutations in Neurospora. . Science 244, 1571-1575.
    [Google Scholar]
  7. Celton L. A. & Celton P. J. ( 1974;). Functional aspects of fluoroacetate resistance in Coprinus with special reference to acetylCoA synthetase deficiency. . Molecular and General Genetics 132, 255-264.
    [Google Scholar]
  8. Cioni M., Pinzanti G. & Vanni P. ( 1981;). Comparative biochemistry of the glyoxylate cycle.. Comparative Biochemistry and Physiology 708, 1-26.
    [Google Scholar]
  9. Connerton I. F. ( 1990;). Premeiotic disruption of the Neurospora crassa malate synthase gene by native and divergent DNAs. . Molecular and General Genetics 223, 319-323.
    [Google Scholar]
  10. Connerton I. F., Fincham J. R. S., Sandeman R. A. & Hynes M. J. ( 1990;). Comparison and cross-species expression of the acetyl-CoA synthetase genes of the ascomycete fungi. , Aspergillus nidulans and Neurospora crassa. Molecular Microbiology 4, 451-460.
    [Google Scholar]
  11. Connerton I. F., Mccullough W. & Fincham J. R. S. ( 1992;). An acetate-sensitive mutant of Neurospora crassa deficient in acetylCoA hydrolase. . Journal of General Microbiology 138, 1797-1800.
    [Google Scholar]
  12. Cregg J. M., Van Der Klei I. J., Sulter G. J. , Veenhuis M. & Harder W. ( 1990;). Peroxisome-deficient mutants of Hansenula polymorpha. . Yeast 6, 87-97.
    [Google Scholar]
  13. Dixon G. H. & Kornberg H. L. ( 1959;). Assay methods for key enzymes of the glyoxylate cycle.. Biochemical Journal 12, 3p.
    [Google Scholar]
  14. Erdmann R. M., Veenhuis M., Mertens O. & Kunau W.-H. ( 1989;). Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae. . Proceedings of the National Academy of Sciences of the United States of America 86, 2432-2436.
    [Google Scholar]
  15. Flavell R. B. & Fincham J. R. S. ( 1968a;). Acetate non-utilizing mutants of Neurospora crassa. 1. Mutant isolation, complementation studies and linkage relationships. . Journal of Bacteriology 95, 1056-1062.
    [Google Scholar]
  16. Flavell R. B. & Fincham J. R. S. ( 1968b;). Acetate non-utilizing mutants of Neurospora crassa. 2. Biochemical deficiencies and roles of certain enzymes. . Journal of Bacteriology 95, 1063-1068.
    [Google Scholar]
  17. Hynes M. J. ( 1977;). Induction of the acetamidase of Aspergillus nidulans by acetate metabolism. . Journal of Bacteriology 131, 770-775.
    [Google Scholar]
  18. HYNES M. J. & KELLY J.M. ( 1977;). Pleiotropic mutants of Aspergillus nidulans altered in carbon metabolism.. Molecular and General Genetics 150, 193-204.
    [Google Scholar]
  19. Jones M. E. & Lipman F. ( 1955;). Aceto-CoA-kinase.. Methods in Enzymology 1, 585-591.
    [Google Scholar]
  20. Katz M. E. & Hynes M. J. ( 1989;). Isolation and analysis of the acetate regulatory. genefacB, from Aspergillus nidulans. Molecular and Cellular Biology 12, 5696-5701.
    [Google Scholar]
  21. Kelly J. M. & Hynes M. J. ( 1981;). The regulation of phosphoenolpyruvate carboxykinase and NADP-linked malic enzyme in Aspergillus nidulans. . Journal of General Microbiology 123, 371-375.
    [Google Scholar]
  22. Kionka C. & Kunau W.-H. ( 1985;). Inducible P-oxidation pathway in Neurospora crassa. . Journal of Bacteriology, 161, 153-157.
    [Google Scholar]
  23. Kobr M. J., Vanderheagh F. & Combepine G. ( 1969;). Particulate enzymes of the glyoxylate cycle in Neurospora crassa. . Biochemical and Biophysical Research Communications 37, 640-645.
    [Google Scholar]
  24. Kujau M., Weber H. & Barth G. ( 1992;). Characterization of mutants of the yeast Yarrowialipolytica deficient in acetyl-coenzyme A synthetase. . Yeast 8, 193-203.
    [Google Scholar]
  25. Kun E., Kirsten E. & Sharma M. L. ( 1977;). Enzymatic formation of glutathione-citryl thioester by a mitochondrial system and its inhibition by (-)erythroftuorocitrate.. Proceedings of the National Academy of Sciences of the United States of America 74, 4942-4946.
    [Google Scholar]
  26. Lee F.-J. S., Lin L.-W. & Smitii J. A. ( 1989;). Purification and characterization of an acetyl-CoA hydrolase from. Saccharomyces cerevisiae. European Journal of Biochemistry 184, 21-28.
    [Google Scholar]
  27. Maconochie M. K., Connerton I. F. & Casselton L.A. ( 1992;). The acu-1 gene of Coprinus cinereus as a regulatory gene required for induction of utilisation of enzymes. . Molecular and General Genetics 234, 211-216.
    [Google Scholar]
  28. Mccullough W. & Roberts C. F. ( 1974;). The role ofmalic enzyme in Aspergillus nidulans. . FEBS Letters 41, 238-242.
    [Google Scholar]
  29. Marathe S., Connerton I. F. & Fincham J. R. S. ( 1990;). Duplication-induced mutation of a new Neurospora gene required for acetate metabolism: properties of the mutant and predicted amino acid sequences of the protein product. . Molecular and Cellular Biology 10, 2638-2644.
    [Google Scholar]
  30. Munkres K. D. & Richards F. M. ( 1965;). Genetic alterations of Neurospora malate dehydrogenase. . Archives of Biochemistry and Biophysics 109, 457-465.
    [Google Scholar]
  31. Munkres K. D., Giles N. H. & Case M. E. ( 1965;). Genetic control of Neurospora malate dehydrogenase and aspartate aminotransferase. . Archives of Biochemistry and Biophysics 109, 397-403.
    [Google Scholar]
  32. Munkres K. D., Benveniste K., Gorski J. & Zuiches C. A. ( 1970;). Genetically induced subcellular mislocation of Neurospora mitochondrial malate dehydrogenase. . Proceedings of the National Academy of Sciences of the United States of America 61, 263-270.
    [Google Scholar]
  33. Perkins D. D. ( 1964;). Multiple interchange stocks for linkage detection.. Neurospora Newsletters 6, 22-23.
    [Google Scholar]
  34. Peters R. A. ( 1957;). Mechanism of the toxicity of the active constituent of Dichapetalam cymosum and related compounds. . Advances in Enzymology 18, 113-159.
    [Google Scholar]
  35. Rao T. K. & Debusk A. G. ( 1977;). An inducible acetate transport system in Neurospora crassa conidia. . Biochimica et Biophysica Acta 470, 475-483.
    [Google Scholar]
  36. Selker E. U., Cambareri E. B., Jensen B. C. & Haack K. R. ( 1987;). Rearrangement of duplicated DNA in specialized cells of Neurospora. . Cell 51, 741-752.
    [Google Scholar]
  37. Schwitzguebel J. P., Moller I. M. & Palmer J. M. ( 1981;). Changes in density of mitochondria and glyoxysomes from Neurospora crassa: a re-evaluation utilizing silica sol gradient centrifugation. . Journal of General Microbiology 126, 289-295.
    [Google Scholar]
  38. Tatum E. L., Barratt R. W. & Cutter V. M. ( 1949;). Chemical induction of colonial paramorphs in Neurospora and Syncephelastrum. . Science 109, 509-511.
    [Google Scholar]
  39. Thomas G. H. & Baxter R. L. ( 1987;). Analysis of mutational lesions of acetate metabolism in Neurospora crassa by 13 C-nuclear magnetic resonance. . Journal of Bacteriology 169, 359-366.
    [Google Scholar]
  40. Thomas G. H., Connerton I. F. & Fincham J. R. S. ( 1988;). Molecular cloning, identification and transcriptional analysis of genes involved in acetate utilization in Neurospora crassa. . Molecular Microbiology 2, 599-606.
    [Google Scholar]
  41. Turian G. & Matikian N. ( 1966;). Conidiation of Neurospora crassa. . Nature, London 212, 1067-1078.
    [Google Scholar]
  42. Vogel H. J. ( 1956;). A convenient growth medium for Neurospora (medium N). . Microbial Genetics Bulletin 13, 42-43.
    [Google Scholar]
  43. Vousden K. H. & Casselton L. A. ( 1983;). Suppression of acetate mutants in Coprinus cinereus. II. Correlation of recessiveness and dosage with suppressed enzyme level. . Current Genetics 1, 385-392.
    [Google Scholar]
  44. Westergaard M. & Mitchell H. K. ( 1947;). A synthetic medium favouring sexual reproduction.. American Journal of Botany 34, 573-577.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-12-2599
Loading
/content/journal/micro/10.1099/00221287-138-12-2599
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error