1887

Abstract

A dipeptidyl aminopeptidase catalysing hydrolysis of X-prolyl amidomethylcoumarin (AMC) substrates has been purified from subsp. H1. The active enzyme has a molecular mass of approximately 150 kDa, a subunit molecular mass of 82 to 83 kDa and is inhibited by the serine protease inhibitor phenylmethylsulphonyl fluoride. The and values for five different dipeptidyl AMC substrates (Gly-Pro-; Leu-Pro-; Lys-Pro-; Phe-Pro- and Glu-Pro-AMC) are similar except for the value for Glu-Pro-AMC, which is about threefold higher than that for the other substrates. The enzyme also catalyses hydrolysis of X-Ala-AMC substrates but with much lower and higher values than the corresponding X-Pro-AMC substrates. The -casein-derived heptapeptides Lys-Ala-Val-Pro-Tyr-Pro-Gln and Tyr-Pro-Phe-Pro-Gly-Pro-Ile were hydrolysed, but bradykinins with N-terminal sequences Arg-Pro-Pro- and Lys-Pro-Pro-were not. Dipeptidyl aminopeptidase specific activity is the same in a plasmid-free strain of . subsp. H1 and in the wild-type, indicating that the enzyme is chromosomally encoded.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-1-49
1991-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/1/mic-137-1-49.html?itemId=/content/journal/micro/10.1099/00221287-137-1-49&mimeType=html&fmt=ahah

References

  1. Booth M., Donnelly W. J., Ni Fhaolain I., Jennings P. V., O’Cuinn G. 1990a; Proline-specific peptidases of Streptococcus cremoris AM2 . Journal of Dairy Research 57:79–88
    [Google Scholar]
  2. Booth M., Ni Fhaolain L, Jennings P. V., O’Cuinn G. 1990b; Purification and characterisation of a post-proline dipeptidyl aminopeptidase from Streptococcus cremoris AM2. Journal of Dairy Research 57:89–99
    [Google Scholar]
  3. Crow V., L„ Davey G. P., Pearce L. E., Thomas T. D. 1983; Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism. Journal of Bacteriology 153:76–83
    [Google Scholar]
  4. Exterkate F. A. 1975; An introductory study of the proteolytic system of Streptococcus cremoris strain HP. Netherlands Milk and Dairy Journal 29:303–318
    [Google Scholar]
  5. Exterkate F. A. 1979; Accumulation of proteinase in the cell wall of Streptococcus cremoris AMI and regulation of its production. Archives of Microbiology 120:247–254
    [Google Scholar]
  6. Harada M., Fukasawa K., Hiraoka Y., Mogi M., Barth A., Neubert K. 1985; Depth of side-chain pocket in the S2 subsite of dipeptidyl peptidase IV. Biochimica et Biophysica Acta 830:341–344
    [Google Scholar]
  7. Hugenholz J., VanSinderen D., Kok J., Konings W. N. 1987; Cell wall-associated proteases of Streptococcus cremoris Wg2. Applied and Environmental Microbiology 53:853–859
    [Google Scholar]
  8. Kato T., Nagatsu T., Kimura T., Sakakibara S. 1978; Fluorescence assay of X-prolyl dipeptidyl-aminopeptidase activity with a new fluorogenic substrate. Biochemical Medicine 19:351–359
    [Google Scholar]
  9. Kenny A. J., Booth A. G., George S. J., Ingram J., Kershaw D., Wood E. J., Young A. R. 1976; Dipeptidyl peptidase IV, a kidney brush-border serine peptidase. Biochemical Journal 155:169–182
    [Google Scholar]
  10. Khalid N. M., Marth E. H. 1990; Purification and characterisation of prolyl-dipeptidyl aminopeptidase from Lactobacillus helveti-cus CNRZ 32. Applied and Environmental Microbiology 56:381–388
    [Google Scholar]
  11. Kiefer-Partsch B., Bockelmann W., Geis A., Teuber M. 1989; Purification of an X-prolyl-dipeptidyl aminopeptidase from the cell wall proteolytic system of Lactococcus lactis subsp. cremoris . Applied Microbiology and Biotechnology 31:75–78
    [Google Scholar]
  12. Koenig W., Geiger R. 1970; New method for the synthesis of peptides: activation of the carboxyl group with dicyclohexylcarbo-diimide by using 1-hydroxybenzotriazoles as additives. Chemische Berichte 103:788–798
    [Google Scholar]
  13. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  14. Law B. A. 1978; Peptide utilisation by group N streptococci. Journal of General Microbiology 105:113–118
    [Google Scholar]
  15. Law B. A., Kolstad J. 1983; Proteolytic systems in lactic acid bacteria. Antonie van Leeuwenhoek 49:225–245
    [Google Scholar]
  16. Leatherbarrow R. J. 1987; ENZFITTER. A non-linear regression data analysis program for the IBM PC. Cambridge, UK: Elsevier Biosoft;
    [Google Scholar]
  17. McDonald J. K., Schwabe C. 1977; Intracellular exopeptidases. In Proteases of Mammalian Cells and Tissues311–392 Barrett A. J. Amsterdam: North-Holland;
    [Google Scholar]
  18. Meyer J., Jordi R. 1987; Purification and characterisation of X-prolyl-dipeptidyl-aminopeptidase from Lactobacillus lactis and from Streptococcus thermophilus . Journal of Dairy Science 70738–745
    [Google Scholar]
  19. Meyer J., Howald D., Jordi R., Furst M. 1989; Location of proteolytic enzymes in Lactobacillus lactis and Streptococcus thermophilus and their influence on cheese ripening. Milchwissenschaft 44:678–681
    [Google Scholar]
  20. Mills O. E., Thomas T. D. 1978; Release of cell wall-associated proteinase(s) from lactic streptococci. New Zealand Journal of Diary Science and Technology 13:209–215
    [Google Scholar]
  21. Monnet V., Le Bars D., Gripon J. C. 1986; Specificity of a cell wall proteinase from Streptococcus lactis NCDO 763 towards bovine β-casein. FEMS Microbiology Letters 36:127–131
    [Google Scholar]
  22. Monnet V., Bockelmann W., Gripon J. C., Teuber M. 1989; Comparison of cell wall proteinases of Lactococcus lactis subsp. cremoris AC1 and Lactococcus lactis subsp. lactis NCDO 763. II. Specificity towards bovine β-casein. Applied Microbiology and Biotechnology 31:112–118
    [Google Scholar]
  23. Rice G. H., Stewart F. H. C, Hillier A. J., Jago G. R. 1978; The uptake of amino acids and peptides by Streptococcus lactis . Journal of Diary Research 45:93–107
    [Google Scholar]
  24. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto F. K., Goeke N. M., Olson B. J., Klenk D. C. 1985; Measurement of protein using bicinchoninic acid. Analytical Biochemistry 150:76–85
    [Google Scholar]
  25. Terzaghi B. E., Sandine W. E. 1975; Improved medium for lactic streptococci and their bacteriophages. Applied Microbiology 29:807–813
    [Google Scholar]
  26. Thomas T. D., Mills O. E. 1981; Proteolytic enzymes of starter bacteria. Netherlands Milk and Dairy Journal 35:255–273
    [Google Scholar]
  27. Thomas T. D., Pritchard G. G. 1987; Proteolytic enzymes of dairy starter cultures. FEMS Microbiology Reviews 46:245–268
    [Google Scholar]
  28. Twining S. 1984; Fluorescein isothiocyanate-labelled casein assay for proteolytic enzymes. Analytical Biochemistry 143:30–34
    [Google Scholar]
  29. Visser S., Exterkate F. A., Slangen C. J., de Veer G. J. C. M. 1988; Action of a cell wall proteinase P, from Streptococcus cremoris HP on bovine β-casein. Applied Microbiology and Biotechnology 29:61–66
    [Google Scholar]
  30. Zevaco C, Monnet V., Gripon J.-C. 1990; Intracellular X-prolyl dipeptidyl peptidase from Lactococcus lactis ssp. lactis: purification and properties. Journal of Applied Bacteriology 68:357–366
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-1-49
Loading
/content/journal/micro/10.1099/00221287-137-1-49
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error