1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-3-377
1990-03-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/3/mic-136-3-377.html?itemId=/content/journal/micro/10.1099/00221287-136-3-377&mimeType=html&fmt=ahah

References

  1. Anderson J. D., Smith H. 1965; The metabolism of erythritol by Brucella abortus. . Journal of General Microbiology 38:109–124
    [Google Scholar]
  2. Anwar H., Brown M.R.W., Day A., Weller P. H. 1984; Outer membrane antigens of mucoid Pseudomonas aeruginosaisolated directly from the sputum of a cystic fibrosis patient. FEMS Microbiology Letters 24:235–239
    [Google Scholar]
  3. Apicella M. A., Westernick M.A.J., Morse S. A., Schneider H., Rice P. A., Griffiss J. M. 1986; Bactericidal antibody response of normal human serum to the lipooligosaccharide of Neisseria gonorrhoeae. . Journal of Infectious Diseases 153:520–525
    [Google Scholar]
  4. Apicella M. A., Shero M., Jarvis G. A., Griffiss J. M., Mandrell R. E., Schneider H. 1987; Phenotypic variation in epitope expression of the Neisseria gonorrhoeae lipooligosaccharide. Infection and Immunity 55:1755–1761
    [Google Scholar]
  5. Arbeit R. D., Dunn R. M. 1987; Expression of capsular polysaccharide during experimental focal infection with Staphylococcus aureus. . Journal of Infectious Diseases 156:947–952
    [Google Scholar]
  6. Arbeit R. D., Nelles M. J. 1987; Capsular polysaccharide antigenemia in rats with experimental endocarditis due to Staphylococcus aureus. . Journal of Infectious Diseases 155:242–246
    [Google Scholar]
  7. Barksdale L., Kim K. 1977; Mycobacteria. Bacteriological Reviews 41:217–372
    [Google Scholar]
  8. Bartkus J. M., Leppla S. H. 1989; Transcriptional regulation of the protective antigen gene of Bacillus anthracis. . Infection and Immunity 57:2295–2300
    [Google Scholar]
  9. Baselski V. S., Medina R. A., Parker C. C. 1978; Survival and multiplication of Vibrio cholerae in the upper bowel of infant mice. Infection and Immunity 22:435–446
    [Google Scholar]
  10. Bassalik-Chabielska L., Craven N., Anderson J. C. 1985; Anaerobiosis in the udder; the effect on bacterial growth, phagocytosis function and antibiotic action. In The Staphylococci, pp 381–384 Jeljaszewicz J. Edited by Stuttgart: Gustav Fischer;
    [Google Scholar]
  11. Betley M. J., Miller V. L., Mekalanos J. J. 1986; Genetics of bacterial enterotoxins. Annual Review of Microbiology 40:577–605
    [Google Scholar]
  12. Bhriain N.Ni, Higgins C. F. 1989; An overlap between osmotic and anaerobic stress responses: a potential role for DNA supercoiling in the coordinate regulation of gene expression. Molecular Microbiology 3:933–942
    [Google Scholar]
  13. Bourret R. B., Hess J. F., Borkovich K. A., Pakula A. A., Simon M. I. 1989; Protein phosphorylation in chemotaxis and two-component regulatory systems of bacteria. Journal of Biological Chemistry 264:7085–7088
    [Google Scholar]
  14. Brackman T. R., Geldmeyer S., Jahn R., Soling H. D. 1983; Radioenzymatic determination of CMP-N-acetylsialic acid and free N-acetylsialic acid in biological material. Analytical Biochemistry 130:369–375
    [Google Scholar]
  15. Braude A. I., Siemienski J. 1960; Role of bacterial urease in experimental pyelonephritis. Journal of Bacteriology 80:171–179
    [Google Scholar]
  16. Brown M.R.W., Williams P. 1985; The influence of environment on envelope properties affecting survival of bacteria in infections. Annual Review of Microbiology 39:527–556
    [Google Scholar]
  17. Brown M.R.W., Anwar H., Lambert P. A. 1984; Evidence that mucoid Pseudomonas aeruginosa in cystic fibrosis lung grows under iron restricted conditions. FEMS Microbiology Letters 21:113–117
    [Google Scholar]
  18. Brown M.R.W., Anwar H., Costerton J. W. 1988; Surface antigens in vivo: a mirror for vaccine development. Canadian Journal of Microbiology 34:494–498
    [Google Scholar]
  19. Bullen J. J. 1981; The significance of iron in infection. Reviews of Infectious Disease 3:1127–1138
    [Google Scholar]
  20. Casey S. G., Veale D. R., Smith H. 1980; Intracellular survival of Neisseria gonorrhoeae in human urethral exudate. FEMS Microbiology Letters 8:97–100
    [Google Scholar]
  21. Cleary T. G., Windsor D. K., Reich D., Ruiz-Palacios G., Calva J. J. 1989; Human milk immunoglobulin A antibodies to Shigella virulence determinants. Infection and Immunity 57:1675–1679
    [Google Scholar]
  22. Cochrane D.M.G., Brown M.R.W., Anwar H., Weller P. H., Lam K., Costerton J. W. 1988a; Antibody response to Pseudomonas aeruginosa surface protein antigens in a rat model of chronic lung infection. Journal of Medical Microbiology 27:255–261
    [Google Scholar]
  23. Cochrane D.M.G., Brown M.R.W., Weller P. H. 1988b; Lipopolysaccharide antigens produced by Pseudomonas aeruginosafrom cystic fibrosis lung infection. FEMS Microbiology Letters 50:241–245
    [Google Scholar]
  24. Cocking E. C., Keppie J., Witt K., Smith H. 1960; The chemical basis of the virulence of Pasteurellapestis. II. Products from P. pestis which kill guinea pigs and mice. British Journal of Experimental Pathology 41:460–471
    [Google Scholar]
  25. Curtiss R. III Kellig S. M., Gulig P. A., Gentry-Weeks C. R., Galan J. E. 1988; Avirulent salmonellae expressing virulence antigens from other pathogens for use as orally administered vaccines. In Virulence Mechanisms of Bacterial Pathogens, pp Roth J. A. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. De S. N., Chatterje D. N. 1953; An experimental study of the mechanism of action of Vibrio cholerae on the intestinal mucous membrane. Journal of Pathology and Bacteriology 66:559–562
    [Google Scholar]
  27. Dorman C. J., Barr G. C., Bhriain N. Ni., Higgins C. F. 1988; DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression. Journal of Bacteriology 170:2816–2826
    [Google Scholar]
  28. Dougan G. 1989; Molecular characterization of bacterial virulence factors and the consequences for vaccine design. Journal of General Microbiology 135:1397–1406
    [Google Scholar]
  29. Dubos R. J. 1954 Biochemical Determinants of Microbial Disease. Cambridge, Massachusetts:: Harvard University Press;
    [Google Scholar]
  30. Duncan J. L. 1983; Streptococcal growth and toxin production in vivo. . Infection and Immunity 40:501–505
    [Google Scholar]
  31. Ellwood D. C. 1974; Growth environment and bacterial toxicity. Journal of Medical Microbiology 7:391–393
    [Google Scholar]
  32. Ellwood D. C., Tempest D. W. 1972; Effects of environment on bacterial wall content and composition. Advances in Microbial Physiology 7:83–117
    [Google Scholar]
  33. Eudy W. W., Burroughs S. E. 1973; Generation times of Proteus mirabilis and E. coli in experimental infections. Chemotherapy 19:161–170
    [Google Scholar]
  34. Finkelstein R. A., LaSpalluto J. J. 1970; Production, purification and assay of cholera toxin. Journal of Infectious Diseases 121:S63–S73
    [Google Scholar]
  35. Finlay B. B., Falkow S. 1989; Common themes in microbial pathogenicity. Microbiological Reviews 53:210–230
    [Google Scholar]
  36. Finn T. M., Arbuthnott J. P., Dougan G. 1982; Properties of Escherichia coli grown in vivo using a chamber implant system. Journal of General Microbiology 128:3083–3091
    [Google Scholar]
  37. Freter R., O’Brien C. M. 1981; Role of chemotaxis in the association of motile bacteria with intestinal mucosa: fitness and virulence of non-chemotactic Vibrio cholerae mutants in infant mice. Infection and Immunity 34:222–223
    [Google Scholar]
  38. Fox A. J., Jones D. M., Scotland S. M., Rowe B., Smith A., Brown M.R.W., FitzGeorge R. G., Baskerville A., Parsons N. J., Cole J. A., Smith H. 1989; Serum-killing of meningococci and several other Gram negative bacterial species is not decreased by incubating them with cytidine 5′-monophospho-N-acetylneuraminic acid. Microbial Pathogenesis 7:317–318
    [Google Scholar]
  39. Fox A. J., Curry A., Rowland P. L., Lancaster S., Jones D. M., Parsons N. J., Cole J. A., Smith H. 1990; A surface polysaccharide forms when gonococci are converted to serum resistance by cytidine 5′-monophospho-N-acetylneuraminic acid. FEMS Microbiology Letters 66:75–80
    [Google Scholar]
  40. Frost A. J., Smith H., Witt K., Keppie J. 1972; The chemical basis of the virulence of Brucella abortus. X. A surface virulence factor which facilitates intracellular growth of Brucella abortus in bovine phagocytes. British Journal of Experimental Pathology 53:587–596
    [Google Scholar]
  41. Fujimoto S., Umeda A., Takade A., Murata K., Amako K. 1989; Hexagonal surface layer of Campylobacter fetus isolated from humans. Infection and Immunity 57:2563–2565
    [Google Scholar]
  42. Glynn A. A., Ward M. E. 1970; Nature and heterogeneity of the antigens of Neisseria gonorrhoeae involved in serum bactericidal reaction. Infection and Immunity 2:162–168
    [Google Scholar]
  43. Gottesman S. 1984; Bacterial regulation: global regulatory networks. Annual Review of Genetics 18:415–441
    [Google Scholar]
  44. Gottschalk A. 1972 Glycoproteins. Their Composition, Structure and Function. Amsterdam:: Elsevier.;
    [Google Scholar]
  45. Griffiss J. M., O’Brien J. P., Yamasaki R., Williams G. D., Ride P. A., Schneider H. 1987; Physical heterogeneity of neisserial lipooligosaccharides reflects oligosaccharides that differ in apparent molecular weight, chemical composition and antigenic expression. Infection and Immunity 55:1792–1800
    [Google Scholar]
  46. Griffiths E., Stevenson P., Joyce P. 1983; Pathogenic Escherichia coli express new outer membrane proteins when growing in vivo. . FEMS Microbiology Letters 16:95–99
    [Google Scholar]
  47. Griffiths E., Stevenson P., Thorpe R., Chart H. 1985; Naturally occurring antibodies in human sera that react with iron-regulated outer membrane proteins of Escherichia coli. . Infection and Immunity 47:808–813
    [Google Scholar]
  48. Griffiths E., Chart H., Stevenson P. 1988; High affinity iron uptake systems and bacterial virulence. In Virulence Mechanisms of Bacterial Pathogens, pp 121–137 Roth J. A. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  49. Guymon L. F., Esser M., Shafer W. M. 1982; Pyocin-resistant lipopolysaccharide mutants of Neisseria gonorrhoeae: alterations in sensitivity to normal human serum and polymixin B. Infection and Immunity 36:541–547
    [Google Scholar]
  50. Hale T. L., Formal S. B. 1988; Virulence mechanisms of enteroinvasive pathogens. In Virulence Mechanisms of Bacterial Pathogens, pp 61–69 Roth J. A. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  51. Harris-Smith P. W., Smith H., Keppie J. 1958; Production in vitro of the toxin of Bacillus anthracis previously recognised in vivo . Journal of General Microbiology 19:91–103
    [Google Scholar]
  52. VanHeyningen W.E. 1955; The role of toxins in pathology. Symposia of the Society for General Microbiology 5:17–39
    [Google Scholar]
  53. Hoiseth S. K., Stocker B.A.D. 1981; Aromatic dependent Salmonella typhimurium are non-virulent and effective live vaccines. Nature London: 291:238–239
    [Google Scholar]
  54. Hooke A. M., Sordelli D. O., Cerquetti H. C., Vogt A. J. 1985; Quantitative determination of bacterial replication in vivo. . Injection and Immunity 49:424–427
    [Google Scholar]
  55. Hormaeche C. E. 1980; The in vivo division and death rates of Salmonella typhimurium in the spleens of naturally resistant and susceptible mice measured by the superinfecting phage technique of Meynell. Immunology 41:973–979
    [Google Scholar]
  56. deHormaeche R. H., Thornley M. J., Glauert A. M. 1978; Demonstration by light and electron microscopy of capsules on gonococci recently grown in vivo. . Journal of General Microbiology 106:81–91
    [Google Scholar]
  57. Jonson G., Svennerholm A., Holmgren J. 1989; Vibrio choleraeexpresses cell surface antigens during intestinal infection which are not expressed during culture. Infection and Immunity 57:1809–1815
    [Google Scholar]
  58. Kadurugamuwa J. L., Anwar H., Brown M.R.W., Hengstler B., Kunz S., Zak O. 1988; Influence of cephalosporins and iron on surface protein antigens of Klebsiella pneumoniae in vivo. . Antimicrobial Agents and Chemotherapy 32:364–368
    [Google Scholar]
  59. Karakawa W. W., Sutton A., Schneerson R., Karpas A., Vann W. F. 1988; Capsular antibodies induce type-specific phagocytosis of capsulated Staphylococcus aureus by human polymorphonuclear leukocytes. Injection and Immunity 56:1090–1095
    [Google Scholar]
  60. Kass E. H., Schliervert P. M., Parsonnet J., Mills J. T. 1988; Effect of magnesium on production of toxic-shock syndrome toxin 1: a collaborative study. Journal of Infectious Diseases 158:44–51
    [Google Scholar]
  61. Kelly N. M., Battershill J. L., Kuo S., Arbuthnott J. P., Hancock R.E.W. 1987; Colonial dissociation and susceptibility to phagocytosis of Pseudomonas aeruginosa grown in a chamber implant model in mice. Infection and Immunity 55:2841–2843
    [Google Scholar]
  62. Kelly N. M., Bell A., Hancock R.E.W. 1989; Surface characteristics of Pseudomonas aeruginosa grown in chamber implant models in mice and rats. Injection and Immunity 57:444–450
    [Google Scholar]
  63. Keppie J., Smith H., Harris-Smith P. W. 1955; The chemical basis of the virulence of Bacillus anthracis. III. The role of the terminal bacteraemia in death of guinea pigs from anthrax. British Journal of Experimental Pathology 36:315–322
    [Google Scholar]
  64. Keppie J., Williams A. E., Witt K., Smith H. 1965; The role of erythritol in the tissue localisation of the brucellae. British Journal of Experimental Pathology 46:104–108
    [Google Scholar]
  65. Keppie J., Witt K., Smith H. 1967; The effect of erythritol on the growth of S19 and other attenuated strains of Brucella abortus. . Research in Veterinary Science 8:294–296
    [Google Scholar]
  66. Kisielius P. V., Schwan W. R., Amundsen S. K., Duncan J. L., Schaeffer A. J. 1989; In vivo expression and variation of Escherichia coli type 1 and P pili in the urine of adults with acute urinary tract infections. Infection and Immunity 57:1656–1662
    [Google Scholar]
  67. Kuratana M., Inzana T. J., Anderson P. 1989; Source of low-molecular-weight host factors that phenotypically increase the resistance of Haemophilus influenzae type b to bacteriolysis: nonidentity with a factor active in gonococci. Microbial Pathogenesis 7:73–77
    [Google Scholar]
  68. Lam C., Turnowskv F., Schwarzinger E., Neruda W. 1984; Bacteria recovered without subculture from infected human urines expressed iron regulated outer membrane proteins. FEMS Microbiology Letters 24:255–259
    [Google Scholar]
  69. Lesse A., Dudas K., Griffiss J., Gibson B., Morse S., Smith H., Apicella M. 1989; Modification of gonococcal LOS epitope structure by CMP-NANA. Abstracts of the 89th Annual Meeting of the American Society for Microbiology B178:p.60.
    [Google Scholar]
  70. Lister A. J. 1957 The metabolism of Corynebacterium renale. PhD Thesis,; University of Cambridge.:
    [Google Scholar]
  71. Logan S. M., Guerry P., Rollins D. M., Burr D. H. 1989; In vivo antigenic variation of Campylobacter flagellin. Infection and Immunity 57:2583–2585
    [Google Scholar]
  72. Lovell R., Harvey D. G. 1950; A preliminary study of ammonia production by Corynebacterium renale and some other pathogenic bacteria. Journal of General Microbiology 4:493–500
    [Google Scholar]
  73. MacLaren D. M. 1968; The significance of urease in proteus pyelonephritis. A bacteriological study. Journal of Pathology and Bacteriology 96:45–51
    [Google Scholar]
  74. Mandrell R. E., Griffiss J.M, Macher B. A. 1988; Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity to the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes Journal of Experimental Medicine 168:107–126
    [Google Scholar]
  75. Mandrell R. E., Lesse A. J., Sugai J. V., Shero M., Griffiss J. M., Cole J. A., Parsons N. J., Smith H., Morse S., Apicella M. A. 1990; In vitro and in vivo modification of Neisseria gonorrhoeae lipooligosaccharide epitope structure by sialylation. Journal of Experimental Medicine (in the Press).
    [Google Scholar]
  76. Martin P.M.V., Patel P. V., Parsons N. J., Smith H. 1981; Induction of phenotypically determined resistance of Neisseria gonorrhoeae to human serum by factors in human serum. Journal of General Microbiology 127:213–217
    [Google Scholar]
  77. Martin P.M.V., Patel P. V., Parsons N. J., Smith H. 1982; Induction in gonococci of phenotypic resistance to killing by human serum by human genital secretions. British Journal of Venereal Diseases 58:363–365
    [Google Scholar]
  78. Martin P.M.V., Patel P. V., Parsons N. J., Smith H. 1983; Induction of serum resistance in recent isolates of Neisseria gonorrhoeae by a low-molecular-weight fraction of guinea pig serum. Journal of Infectious Diseases 148:334
    [Google Scholar]
  79. Martin P.M.V., Patel P. V., Clay J. C., Parsons N. J., Smith H. 1984; Induction by human serum of resistance to serum in Neisseria gonorrhoeae: a clinical survey of patients with gonorrhoea. British Journal of Venereal Diseases 60:151–153
    [Google Scholar]
  80. Maw J., Meynell G. G. 1968; The true division and death rates of Salmonella typhimurium in the mouse spleen determined with superinfected phage P22 . British Journal of Experimental Pathology 49:597–613
    [Google Scholar]
  81. Meynell G. G., Subbaiah T. V. 1963; Antibacterial mechanisms of the mouse gut. I. Kinetics of infection by Salmonella typhimuriumin normal and streptomycin-treated mice studied with abortive transductants. British Journal of Experimental Pathology 44:197–208
    [Google Scholar]
  82. Miller J. F., Mekalanos J. J., Falkow S. 1989; Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243:916–922
    [Google Scholar]
  83. Mintz C. S., Chen J., Schuman H. A. 1988; Isolation and characterization of auxotropic mutants of Legionella pneumophilathat fail to multiply in human monocytes. Infection and Immunity 56:1449–1455
    [Google Scholar]
  84. Moore D. G., Earhart C. F. 1981; Specific inhibition ofEscherichia coli ferrienterochelin uptake by normal human serum immunoglobulin. Infection and Immunity 31:631–635
    [Google Scholar]
  85. Nairn C. A., Cole J. A., Patel P. V., Parsons N. J., Fox J. E., Smith H. 1988; Cytidine 5’-monophospho-N-acetylneuraminic acid or a related compound is the low-Mr factor from human red blood cells which induces gonococcal resistance to killing by human serum. Journal of General Microbiology 134:3295–3306
    [Google Scholar]
  86. Novotny P., Short J. A., Hughes M., Miles J. J., Syrett C., Turner W. H., Harris J.R.W., MacLennan I.P.B. 1977; Studies on the mechanism of pathogenicity of Neisseria gonorrhoeae. . Journal of Medical Microbiology 10:347–365
    [Google Scholar]
  87. Nowicki B., Vuopio-Varkila J., Viljanen P., Korhonen T. K. 1986; Fimbrial phase variation and systemic Escherichia coli infection studied in the mouse peritonitis model. Microbial Pathogenesis 1:335–347
    [Google Scholar]
  88. O’Callaghan D., Maskell D., Liew F. Y., Easmon C.S.F., Dougan G. 1988; Characterization of aromatic-and purinedependent Salmonella typhimurium: attenuation, persistence and ability to induce protective immunity in BALB/C mice. Infection and Immunity 56:419–423
    [Google Scholar]
  89. Onderdonk A. B., Johnson J., Mayhew J. W., Gorbach S. L. 1976; Effect of dissolved oxygen and Eh on Bacteroides fragilisduring continuous culture. Applied and Environmental Microbiology 31:168–172
    [Google Scholar]
  90. Parsons N. J., Patel P. V., Martin P.M.V., Goldner M., Smith H. 1985; Gonococci in vitro and in vivo : studies of the host and bacterial determinants of gonococcal resistance to killing by human serum and by phagocytes. In The Pathogenic Neisseriae, pp 487–494 Schoolnik G. K., Brookes G. F., Falkow S., Frasch C. F., Knapp J. S., McCutchan J. A., Morse S. A. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  91. Parsons N. J., Kwaasi A.A.A, Patel P. V., Nairn C. A., Smith H. 1986; A determinant of resistance of Neisseria gonorrhoeae to killing by human phagocytes; an outer membrane lipoprotein of about 20 kDa with a high content of glutamic acid. Journal of General Microbiology 132:3277–3287
    [Google Scholar]
  92. Parsons N. J., Patel P. V., Tan E. L., Andrade J.R.C., Nairn C. A., Goldner M., Cole J. A., Smith H. 1988; Cytidine 5′-monophospho-N-acetylneuraminic acid and a low molecular weight factor from human blood cells induce lipopolysaccharide alteration in gonococci when conferring resistance to killing by human serum. Microbial Pathogenesis 5:303–309
    [Google Scholar]
  93. Parsons N. J., Andrade J.R.C., Patel P. V., Cole J. A. 1989; Sialylation of lipopolysaccharide and loss of absorption of bactericidal antibody during conversion of gonococci to serum resistance by cytidine 5′-monophospho-N-acetylneuraminic acid. Microbial Pathogenesis 7:63–72
    [Google Scholar]
  94. Patel P. V., Veale D. R., Fox J. E., Martin P.M.V., Parsons N. J., Smith H. 1984a; Fractionation of guinea pig serum for an inducer of gonococcal resistance to killing by human serum: active fractions containing glucopeptides similar to those from human red blood cells. Journal of General Microbiology 130:2757–2766
    [Google Scholar]
  95. Patel P. V., Martin P.M.V., Goldner M., Parsons N. J., Smith H. 1984b; Red blood cells, a source of factors which induce Neisseria gonorrhoeae to resistance to complement mediated killing by human serum. Journal of General Microbiology 130:2767–2770
    [Google Scholar]
  96. Patel P. V., Parsons N. J., Andrade J.R.C., Nairn C. A., Tan E. L., Goldner M., Cole J. A., Smith H. 1988; White blood cells including polymorphonuclear phagocytes contain a factor which induces gonococcal resistance to complement mediated serum killing. FEMS Microbiology Letters 50:173–176
    [Google Scholar]
  97. Patrick S. 1988; Phagocytosis of Bacteroides fragilis in vivo and in vitro. . In Anaerobes Today, pp 31–41 Hardie J. M., Borriello S. P. Edited by London: John Wiley;
    [Google Scholar]
  98. Pearce J. H., Lowrie D. B. 1972; Tissue and host specificity in bacterial infection. Symposia of the Society for General Microbiology 22:193–216
    [Google Scholar]
  99. Pearce J. H., Williams A. E., Harris-Smith P. W., Fitzgeorge R. B., Smith H. 1962; The chemical basis of the virulence of Brucella abortus. II. Erythritol, a constituent of bovine foetal fluids which stimulates the growth of Br. abortus in bovine phagocytes. British Journal of Experimental Pathology 43:31–37
    [Google Scholar]
  100. Penn C. W., Veale D. R., Smith H. 1977; Selection from gonococci grown in vitro of a colony type with some virulence properties of organisms adapted in vivo. . Journal of General Microbiology 100:147–158
    [Google Scholar]
  101. Polk H. C., Miles A. A. 1973; The decisive period in the primary infection of muscle by Escherichia coli. . British Journal of Experimental Pathology 54:99–109
    [Google Scholar]
  102. Rest R. F., Shafer W. M. 1989; Interactions of Neisseria gonorrhoeae with human neutrophils. Clinical Microbiology Reviews 2:S83–S91
    [Google Scholar]
  103. Rice P. A., McMormack W. M., Kasper D. L. 1980; Natural serum bactericidal activity against Neisseria gonorrhoeae isolates from disseminated, locally invasive and uncomplicated disease. Journal of Immunology 124:2105–2109
    [Google Scholar]
  104. Rittenberg S. C., Penn C. W., Parsons N. J., Veale D. R., Smith H. 1977; Phenotypic changes in the resistance of Neisseria gonorrhoeae to killing by normal human serum. Journal of General Microbiology 103:69–75
    [Google Scholar]
  105. Ruben L. G. 1986; Comparison of in vivo and in vitro multiplication rates of Haemophilus influenzae type b. Infection and Immunity 52:911–913
    [Google Scholar]
  106. Salyers A. A. 1989; Molecular and biochemical approaches to determining what bacteria are doing in vivo. . Antonie van Leeuwenhoek 55:33–39
    [Google Scholar]
  107. Schade A. L., Caroline L. 1944; Raw hen egg white and the role of iron in growth inhibition of Shigella dysenteriae, Staphylococcus aureus, Escherichia coli and Saccharomyces cerevisiae. . Science 100:14–15
    [Google Scholar]
  108. Schade A. L., Caroline L. 1946; An iron-binding component in human blood plasma. Science 104:340–341
    [Google Scholar]
  109. Schoolnik G. K., Ochs H. D., Buchanan T. M. 1979; Immunoglobulin class responsible for gonococcal bactericidal activity of normal human sera. Journal of Immunology 122:1771–1779
    [Google Scholar]
  110. Sciortino C. V., Finkelstein R. A. 1983; Vibrio choleraeexpresses iron-regulated outer membrane proteins in vivo. . Infection and Immunity 42:990–996
    [Google Scholar]
  111. Scudder P. R., Chantler E. N. 1981; Glycosyltransferases of the human cervical epithelium. II. Characteristics of a CMP-N-acetylneuraminate, galactosyl glycoprotein sialyltransferase. Biochimica et Biophysica Acta 660:136–141
    [Google Scholar]
  112. Segal W., Bloch H. 1956; Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. . Journal of Bacteriology 12:132–141
    [Google Scholar]
  113. Segal W., Bloch H. 1957; Pathogenic and immunogenic differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. . American Reviews of Tuberculosis 78:495–507
    [Google Scholar]
  114. Shand G. H., Anwar H., Kadurugamuwa J. J., Brown M.R.W., Silverman S. H., Melling J. 1985; In vivo evidence that bacteria in urinary tract infection grow under iron restricted conditions. Infection and Immunity 48:35–39
    [Google Scholar]
  115. Sigel S. P., Finkelstein R. A., Parker C. D. 1981; Ability of an avirulent mutant of Vibrio cholerae to colonize in the infant mouse upper bowel. Infection and Immunity 32:474–479
    [Google Scholar]
  116. Simon G. L., Klempner M. S., Kasper D. L., Gorbach S. L. 1982; Alteration in opsono-phagocytic killing by neutrophils of Bacteroides fragilis associated with animal and laboratory passage: effect of capsular polysaccharide. Journal of Infectious Diseases 145:72–77
    [Google Scholar]
  117. Smith H. 1958; The use of bacteria grown in vivo for studies on the basis of their pathogenicity. Annual Review of Microbiology 12:77–102
    [Google Scholar]
  118. Smith H. 1964; Microbial behaviour in natural and artificial environments. Symposia of the Society for General Microbiology 14:1–30
    [Google Scholar]
  119. Smith H. 1976; Survival of vegetative bacteria in animals. Symposia of the Society for General Microbiology 26:299–326
    [Google Scholar]
  120. Smith H. 1984; The biochemical challenge of microbial pathogenicity. Journal of Applied Bacteriology 57:395–404
    [Google Scholar]
  121. Smith H. 1985; The chemotherapeutic potential of inhibition or circumvention of the determinants of microbial pathogenicity. Symposia of the Society for General Microbiology 38:367–393
    [Google Scholar]
  122. Smith H. 1989; The mounting interest in bacterial and viral pathogenicity. Annual Review of Microbiology 43:1–22
    [Google Scholar]
  123. Smith H., FitzGeorge R. B. 1964; The chemical basis of the virulence of Brucella abortus. V. The basis of the intracellular survival and growth in bovine phagocytes. British Journal of Experimental Pathology 45:174–186
    [Google Scholar]
  124. Smith H., Keppie J. 1954; Observations on experimental anthrax: demonstration of a specific lethal factor produced by Bacillus anthracis in vivo. . Nature London: 173:869–870
    [Google Scholar]
  125. Smith H., Stoner H. B. 1967; Anthrax toxic complex. Federation Proceedings 26:1554–1557
    [Google Scholar]
  126. Smith H., Keppie J., Stanley J. L. 1953a; A method for collecting bacteria and their products from infections in experimental animals: with special reference to Bacillus anthracis. . British Journal of Experimental Pathology 34:471–476
    [Google Scholar]
  127. Smith H., Keppie J., Stanley J. L. 1953b; The chemical basis of the virulence of Bacillus anthracis. I. Properties of bacteria grown in vivo and preparation of extracts. British Journal of Experimental Pathology 34:477–485
    [Google Scholar]
  128. Smith H., Keppie J., Ross J. M., Stanley J. L. 1954; Observations on the cause of death in experimental anthrax. Lancet474–476
    [Google Scholar]
  129. Smith H., Keppie J., Harris-Smith P. W., Stanley J. L. 1955a; The chemical basis of the virulence of Bacillus anthracis. IV. Secondary shock as a major factor in the death of guinea pigs from anthrax. British Journal of Experimental Pathology 36:323–335
    [Google Scholar]
  130. Smith H., Keppie J., Stanley J. L. 1955b; The chemical basis of the virulence of Bacillus anthracis. V. The specific toxin produced by B. anthracis in vivo. . British Journal of Experimental Pathology 36:460–472
    [Google Scholar]
  131. Smith H., Keppie J., Cocking E. C., Witt K. 1960; The chemical basis of the virulence of Pasteurella pestis. I. The isolation and aggressive properties of P. pestis and its products from infected guinea pigs. British Journal of Experimental Pathology 41:452–459
    [Google Scholar]
  132. Smith H., Keppie J., Pearce J. H., Fuller R., Williams A. E. 1961; The chemical basis of the virulence of Brucella abortus. I. Isolation of Brucella abortus from bovine foetal tissue. British Journal of Experimental Pathology 42:631–637
    [Google Scholar]
  133. Smith H., Williams A. E., Pearce J. H., Keppie J., Harris-Smith P. W., FitzGeorge R. B., Witt K. 1962; Foetal erythritol, a cause of localization of Brucella abortus in bovine contagious abortion. Nature London: 193:47–49
    [Google Scholar]
  134. Smith H., Anderson J. D., Keppie J., Kent P. W., Timmis G. M. 1965; The inhibition of the growth of brucellae in vitro and in vivo by analogues of erythritol. Journal of General Microbiology 38:101–108
    [Google Scholar]
  135. Sordelli D. O., Cerquetti M. C., Hooke A. M. 1985; Replication rate of Pseudomonas aeruginosa in the murine lung. Infection and Immunity 50:388–391
    [Google Scholar]
  136. Stephen J., Pietrowski R. A. 1986 Bacterial Toxins,, 2nd edn.. Walton-on-Thames, UK:: Thomas Nelson.;
    [Google Scholar]
  137. Stephens D. S., Shafer W. M. 1987; Evidence that the serum resistance genetic locus sac-3 of Neisseria gonorrhoeae is involved in lipopolysaccharide structure. Journal of General Microbiology 133:2671–2678
    [Google Scholar]
  138. Stanley J. L., Smith H. 1967; The chemical basis of the virulence of Pasteurella pestis. IV. The components of the guinea pig toxin. British Journal of Experimental Pathology 48:124–129
    [Google Scholar]
  139. Swanson J., Robbins K., Barrera O., Corwin D., Boslego J., Biok J., Blake M., Koomey J. M. 1987; Gonococcal pilin variants in experimental gonorrhoea. Journal of Experimental Medicine 165:1344–1357
    [Google Scholar]
  140. Swanson J., Barrera O., Sola J., Boslego J. 1988; Expression of outer membrane protein II by gonococci in experimental gonorrhoea. Journal of Experimental Medicine 168:2121–2129
    [Google Scholar]
  141. Tan E. L., Patel P. V., Parsons N. J., Martin P.M.V., Smith H. 1986; Lipopolysaccharide alteration is associated with induced resistance of Neisseria gonorrhoeae to killing by human serum. Journal of General Microbiology 132:1407–1413
    [Google Scholar]
  142. Tempest D. W., Smith H. 1957; The effect of metabolite analogues on growth of Bacillus anthracis in the guinea pig and on the formation of virulence determining factors. Journal of General Microbiology 17:739–749
    [Google Scholar]
  143. Wagner M., Holm S. E., Wagner B. 1982; Growth of group B streptococci and development of surface antigens in tissue cages implanted into rabbits. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene 252:287–298
    [Google Scholar]
  144. Ward K. H., Anwar H., Brown M.R.W., Wale J., Gowar J. 1988; Antibody response to outer membrane antigens of Pseudomonas aeruginosa in human bum wound infection. Journal of Medical Microbiology 27:179–190
    [Google Scholar]
  145. Ward M. E., Watt P. J., Glynn A. A. 1970; Gonococci in urethral exudates possess a virulence factor lost on subculture. Nature London: 227:382–384
    [Google Scholar]
  146. Watson D. W. 1983; Models to study antigenic and virulence properties of Staphylococcus aureus grown under in vivo conditions. In Experimental Bacterial and Parasite Infections, pp 85–90 Keusch G., Wadstrom T. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  147. Weinberg E. D. 1978; Iron and infection. Microbiological Reviews 42:45–66
    [Google Scholar]
  148. Williams A. E., Keppie J., Smith H. 1962; The chemical basis of the virulence of Brucella abortus. III. Foetal erythritol. A cause of the localisation of Brucella abortus in pregnant cows. British Journal of Experimental Pathology 43:530–537
    [Google Scholar]
  149. Williams A. E., Keppie J., Smith H. 1964; The relation of erythritol usage to virulence in brucellae. Journal of General Microbiology 37:285–292
    [Google Scholar]
  150. Wilson G. S., Miles A. A. 1946 Topley and Wilson’s Principles of Bacteriology and Immunity,, 3rd edn.. London:: Edward Arnold.;
    [Google Scholar]
  151. Woods D. D., Foster M. A. 1964; Metabolic considerations relating to life of bacteria in vivo. . Symposia of the Society for General Microbiology 14:30–43
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-3-377
Loading
/content/journal/micro/10.1099/00221287-136-3-377
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error