SUMMARY: Removal of the growth medium and resuspension of vegetative cells in a sporulation medium resulted in an abrupt fall of fructose 2,6-bisphosphate concentration to about 2% of its initial value within 10 min. The concentrations of hexose 6-phosphate and of fructose 1,6-bisphosphate also decreased by, respectively, three and tenfold over the same period. All these values remained at their low level throughout the sporulation phase and during the subsequent germination of zoospores when performed in the absence of glucose. In contrast, the concentration of cyclic AMP was low during the sporulation period and exhibited a transient increase a few minutes after the initiation of germination. Other biochemical events occurring during sporulation were a 70% reduction in glycogen content and the complete disappearance of trehalose. The remaining glycogen was degraded upon subsequent germination of the zoospores. phosphofructo 2-kinase (PFK-2) and fructose-2,6-bisphosphatase (FBPase-2) could not be separated from each other by various chromatographic procedures, suggesting that they were part of a single bifunctional protein. On anion-exchange chromatography, two peaks of PFK-2 and FBPase-2 were resolved. Upon incubation of fractions from the two peaks or of a crude extract in the presence of [2-P]fructose 2,6-bisphosphate, two radiolabelled subunits with molecular masses close to 90 and 54 kDa were obtained. The labelling of the subunit of higher molecular mass was greater than that of the lower one in extracts prepared in the presence of protease inhibitors and in the first peak of the Mono Q column. PFK-2 and FBPase-2 displayed kinetic properties comparable to those of mammalian enzymes, but no indication of a cyclic AMP-dependent regulation could be obtained. Phosphofructo 1-kinase and fructose-1,6-bisphosphatase from were, respectively, stimulated and inhibited by micromolar concentrations of fructose 2,6-bisphosphate. The physiological significance of these properties is discussed. A simple method for the determination of trehalose is also reported.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error