1887

Abstract

The herbicide suphometuron methyl inhibits the utilization of pyruvate and 2-ketobutyrate by the branched-chain amino acid biosynthetic enzyme acetolactate synthase. Eighteen insertions of the transposon Tn into the genome LT2 caused hypersensitivity to this herbicide. Five of these insertions conferred a partial auxotrophic requirement. Concurrent herbicide sensitivity and heat-labile pantothenate auxotrophy was due to ::Tn mutations, while coincident sulphometuron methyl sensitivity and thiamin auxotrophy was attributable to ::Tn mutations. The phenotypes of these mutations suggested that coenzyme A and thiamin pyrophosphate availability modulated the cells’ response to sulphometuron methyl. A model suggesting a key role for 2-ketobutyrate accumulation in herbicide action is supported by the function of thiamin pyrophosphate in 2-ketoacid metabolism and the known role of a 2-ketoacid in coenzyme A synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-8-2209
1989-08-01
2021-07-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/8/mic-135-8-2209.html?itemId=/content/journal/micro/10.1099/00221287-135-8-2209&mimeType=html&fmt=ahah

References

  1. Bachmann B.J. 1987; Linkage map of Escherichia coli K-12, edition 7.. In Escherichia coli and Salmonella typhimurium.Cellular and Molecular Biology, pp 807–876 Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E. Edited by Washington DC: American Society for Microbiology;
    [Google Scholar]
  2. Barak Z., Chipman D.M., Gollop N. 1987; Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria.. Journal of Bacteriology 169:3750–3756
    [Google Scholar]
  3. Benson P.F., Fensom A.H. 1985 Genetic Biochemical Disorders. Oxford:: Oxford University Press.;
    [Google Scholar]
  4. Berg C.M., Berg D.E. 1987; Uses of transposable elements and maps of known insertions.. In Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology pp 1071–1109 Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Blazey D.L., Burns R.O. 1982; Transcriptional activity of the transposable element Tn 10 in the Salmonella typhimurium ilvGEDA operon.. Proceedings of the National Academy of Sciences of the United States of America 79:5011–5015
    [Google Scholar]
  6. Bradford M.M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.. Analytical Biochemistry 72:248–254
    [Google Scholar]
  7. Britten R.G., McClure F.T. 1962; The amino acid pool in Escherichia coli.. Bacteriological Reviews 26:292–335
    [Google Scholar]
  8. Brown G.M., Williamson J.M. 1987; Biosynthesis of folic acid, riboflavin, thiamine and pantothenic acid.. In Escherichia coli and Salmonella typhimurium.Cellular and Molecular Biology, pp 521–538 Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Ciampi M.F., Schmid M.B., Roth J.R. 1982; Transposon Tn10 provides a promoter for transcription of adjacent sequences.. Proceedings of the National Academy of Sciences of the United States of America 79:5016–5020
    [Google Scholar]
  10. Cronan J.E. Jr 1980; β-Alanine synthesis in Escherichia coli.. Journal of Bacteriology 141:1291–1297
    [Google Scholar]
  11. Cronan J.E. Jr Littel K.J., Jackowski S. 1982; Genetic and biochemical analyses of pantothenate biosynthesis in Escherichia coli and Salmonella typhimurium.. Journal of Bacteriology 149:9l6–922
    [Google Scholar]
  12. Danchin A., Dondon L., Daniel J. 1984; Metabolic alterations mediated by 2-ketobutyrate in Escherichia coli K12.. Molecular and General Genetics 193:473–478
    [Google Scholar]
  13. Daniel J., Dondon L., Danchin A. 1983; 2- Ketobutyrate: a putative alarmone of Escherichia coli.. Molecular and General Genetics 190:450–458
    [Google Scholar]
  14. Davis R.W., Botstein D., Roth J.R. 1980 Advanced Bacterial Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  15. Demerec M.E., Lahr E.L., Balbinder E., Miyake T., Mack C., Mackey D., Ishidu J. 1959; Bacterial genetics.. Carnegie Institute of Washington Yearbook 55:433–440
    [Google Scholar]
  16. Elliott T., Roth J.R. 1989; Heme-deficient mutants of Salmonella typhimurium: two genes required for ALA synthesis.. Molecular and General Genetics (in the Press)
    [Google Scholar]
  17. Holmes W.H. 1986; The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate.. Current Topics in Cellular Regulation 28:69–105
    [Google Scholar]
  18. Hong J.-S., Ames B.N. 1971; Localized mutagenesis of any small specific region of the bacterial chromosome.. Proceedings of the National Academy of Sciences of the United States of America 68:3158–3162
    [Google Scholar]
  19. Kleckner N., Roth J., Botstein D. 1977; Genetic engineering in vivo using translocatable drug-resistant elements: new methods in bacterial genetics.. Journal of Molecular Biology 116:125–159
    [Google Scholar]
  20. LaRossa R.A., Schloss J.V. 1984; The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolac- tate synthase in Salmonella typhimurium.. Journal of Biological Chemistry 259:8753–8757
    [Google Scholar]
  21. Larossa R.A., Smulski D.R. 1984; ilvB-encoded acetolactate synthase is resistant to the herbicide sulfometuron methyl.. Journal of Bacteriology 160:391–394
    [Google Scholar]
  22. LaRossa R.A., VanDyk T.K. 1987; Metabolic mayhem caused by 2-ketoacid imbalances.. Bioessays 7:125–130
    [Google Scholar]
  23. LaRossa R.A., VanDyk T.K. 1988; Utilization of sulfometuron methyl, an acetolactate synthase inhibitor, in molecular biological and metabolic studies of plants and microbes.. Methods in Enzymology 166:97–107
    [Google Scholar]
  24. LaRossa R.A., VanDyk T.K., Smulski D.R. 1987; Toxic accumulation of α-ketobutyrate caused by inhibition of the branched chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium.. Journal of Bacteriology 169:1372–1378
    [Google Scholar]
  25. Neuhard J., Nygaard P. 1987; Purines and pyrimidines.. In Escherichia coli and Salmonella typhimurium.Cellular and Molecular Biology, pp 445–473 Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Ortega M.V., Cardenas A., Ubiera D. 1975; panD, a new chromosomal locus of Salmonella typhimurium for the biosynthesis of β-alanine.. Molecular and General Genetics 140:159–164
    [Google Scholar]
  27. Primerano D.A., Burns R.O. 1982; Metabolic basis for the isoleucine, pantothenate or methionine requirement of ilvG strains of Salmonella typhimurium.. Journal of Bacteriology 150:1202–1211
    [Google Scholar]
  28. Primerano D.A., Burns R.O. 1983; Role of acetohydroxy acid isomeroreductase in biosynthesis of pantothenic acid in Salmonella typhimurium.. Journal of Bacteriology 153:259–269
    [Google Scholar]
  29. Recsei P.A., Snell E.E. 1983; Pyruvoyl enzymes.. Annual Review of Biochemistry 53:357–387
    [Google Scholar]
  30. Reznikoff W.S., Abelson J.N. 1978; The lacpromoter.. In The Operon pp 221–243 Miller J. H., Reznikoff W. S. Edited by Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sanderson K.E., Hurley J.A. 1987; Linkage map of Salmonella typhimurium.. In Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, pp 877–918 Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Shaw K.J., Berg C.M. 1980; Substrate channeling: α-ketobutyrate inhibition of acetohydroxy acid synthase in Salmonella typhimurium.. Journal of Bacteriology 143:1509–1512
    [Google Scholar]
  33. Slotnick I.J., Weinfeld H. 1957; Dihydrouracil as a growth factor for mutant strains of Escherichia coli.. Journal of Bacteriology 74:122–125
    [Google Scholar]
  34. Spitzer E.D., Weiss B. 1985; dfp gene of Escherichia coli K-12, a locus affecting DNA synthesis, codes for a flavoprotein.. Journal of Bacteriology 164:994–1003
    [Google Scholar]
  35. Spitzer E.D., Jimenez-Billini H.E., Weiss B. 1988; β-Alanine auxotrophy associated with dfp, a locus affecting DNA synthesis in Escherichia coli.. Journal of Bacteriology 170:872–876
    [Google Scholar]
  36. Umbarger H.E. 1987; Branched-chain amino acids.. In Escherichia coli and Salmonella typhimurium.Cellular and Molecular Biology, pp 352–367 Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Vallari D.S., Jackowski S., Rock C.O. 1987; Regulation of pantothenate kinase by coenzyme A and its thioesters.. Journal of Biological Chemistry 262:2468–2472
    [Google Scholar]
  38. VanDyk T.K., LaRossa R.A. 1986; Sensitivity of a Salmonella typhimurium aspC mutant to sulfome- turon methyl, a potent inhibitor of acetolactate synthase II.. Journal of Bacteriology 165:
    [Google Scholar]
  39. Van Dyk T. K., LaRossa R. A. 1987; Involvement of ack-pta operon products in α-ketobuiyrate metabolism by Sulnionella typhirriurium.. Molecular and General Genetics 207:435–440
    [Google Scholar]
  40. Vinopal R.T. 1987; Selectable phenotypes.. In Escherichia coli and Salmonella typhimurium.Cellular and Molecular Biology, pp Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  41. Webb E.C. 1984 In Enzyme Nomenclature, pp Orlando, Florida:: Academic Press.;
    [Google Scholar]
  42. West T.P., Traut T.W., Shanley M.S., O’Donovan G.A. 1985; A Salmonella typhimurium strain defective in uracil catabolism and β- alanine synthesis.. Journal of General Microbiology 131:1083–1090
    [Google Scholar]
  43. Williamson J.M. 1985; l-Aspartate-α-decarboxy- lase.. Methods in Enzymology 113:589–595
    [Google Scholar]
  44. Williamson J.M., Brown G.M. 1979; Purification and properties of l-aspartate-α-decarboxylase, an enzyme that catalyzes the formation of β-alanine in Escherichia coli.. Journal of Biological Chemistry 254:8074–8082
    [Google Scholar]
  45. Wu T.T. 1966; A model for three point analysis of random transduction.. Genetics 54:405–410
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-8-2209
Loading
/content/journal/micro/10.1099/00221287-135-8-2209
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error