1887

Abstract

Human polymorphonuclear leucocyte (PMN) lysosomal cathepsin G exerts potent bactericidal action against , independent of its serine esterase activity. The results presented demonstrate that (1) bactericidal, diisopropylfluorophosphate-treated cathepsin G binds in a specific and saturable manner to the surface of gonococci, (2) loss of carbohydrates in gonococcal LPS due to mutation increases total and specific binding of cathepsin G, and (3) at least three outer-membrane proteins (OMPs) (PIA, PIII. and a 45 kDa OMP) interact with cathepsin G. Taken together, the results suggest that gonococcal susceptibility to the lethal action of cathepsin G, and perhaps susceptibility of gonococci to oxygen-independent killing by PMNs, is controlled by LPS-masking of cathepsin-G-binding OMPs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-3-539
1988-03-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/3/mic-134-3-539.html?itemId=/content/journal/micro/10.1099/00221287-134-3-539&mimeType=html&fmt=ahah

References

  1. Bradford M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  2. Casey S. G., Shafer W. M., Spitznagel J. K. 1986; Neisseria gonorrhoeae survive intraleukocytic oxygen-independent antimicrobial capacities of anaerobic and aerobic granulocytes in the presence of pyocin lethal for extracellular gonococci. Infection and Immunity 52:384–389
    [Google Scholar]
  3. Farley M. F., Shafer W. M., Spitznagel J. K. 1987; Antimicrobial binding of a radiolabeled cationic neutrophil granule protein. Infection and Immunity 55:1536–1539
    [Google Scholar]
  4. Hitchcock P. J. 1984; Analyses of gonococcal lipopolysaccharide in whole cell lysates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis: stable association of lipopolysaccharide with the major outer membrane protein (protein I) of Neisseria gonorrhoeae. Infection and Immunity 46:202–212
    [Google Scholar]
  5. Joiner K. A., Warren K. A., Brown E., Swanson J., Frank M. M. 1983; Studies on the mechanism of bacterial resistance to complement-mediated killing. IV. C5b-9 forms high molecular weight complexes with bacterial outer membrane constituents on serum-resistant but not on serum-sensitive Neisseria gonorrhoeae. Journal of Immunology 131:1443–1451
    [Google Scholar]
  6. Judd R. C. 1982; Surface peptide mapping of protein I and protein III of four strains of Neisseria gonorrhoeae. Infection and Immunity 37:632–636
    [Google Scholar]
  7. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  8. Mcdade R. L., Johnston K. H. 1980; Characterization of serologically dominant outer membrane proteins of Neisseria gonorrhoeae. Journal of Bacteriology 141:1183–1191
    [Google Scholar]
  9. Newhall W. J., Sawyer W. D., Haak R. A. 1980; Crosslinking analysis of the outer membrane proteins of Neisseria gonorrhoeae. Infection and Immunity 28:785–792
    [Google Scholar]
  10. Odeberg H., Olsson I. 1975; Antibacterial acuvuy oi cauumc proicins lrom numan granulocytes. Journal of Clinical Investigation 56:1118–1124
    [Google Scholar]
  11. Pohlner J., Halter R., Beyreuther K., Meyer T. F. 1987; Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature; London: 325458–462
    [Google Scholar]
  12. Rest R. F., Cooney M. H., Spitznagel J. K. 1977; Susceptibility of lipopolysaccharide mutants to the bactericidal action of human neutrophil lysosomal fractions. Infection and Immunity 16:145–151
    [Google Scholar]
  13. Rest R. F., Fischer S. H., Ingham Z. Z., Jones J. F. 1982; Interactions of Neisseria gonorrhoeae with human neutrophils: effect of serum and gonococcal opacity on phagocytic killing and chemiluminescence. Infection and Immunity 36:737–742
    [Google Scholar]
  14. Shafer W. M., Morse S. A. 1987; Cleavage of the protein III and major iron-regulated protein of Neisseria gonorrhoeae by lysosomal cathepsin G. Journal of General Microbiology 133:155–162
    [Google Scholar]
  15. Shafer W. M., Martin L. E., Spitznagel J. K. 1984; Cationic proteins isolated from human neutrophil granulocytes in the presence of diisopropyl fluorophosphate. Infection and Immunity 45:29–35
    [Google Scholar]
  16. Shafer W. M., Onunka V. C., Hitchcock P. J. 1986a; A spontaneous mutant of Neisseria gonorrhoeae with decreased resistance to neutrophil granule proteins. Journal of Infectious Diseases 153:410–417
    [Google Scholar]
  17. Shafer W. M., Onunka V. C., Martin L. E. 1986b; Antigonococcal activity of human neutrophil cathepsin G. Infection and Immunity 54:184–188
    [Google Scholar]
  18. Tam M. R., Buchanan T. M., Sandstrom E. G., Holmes K. K., Knapp J. S., Siadak A. W., Nowinski R. C. 1982; Serological classification of Neisseria gonorrhoeae with monoclonal antibodies. Infection and Immunity 36:1042–1053
    [Google Scholar]
  19. Travis T. J., Giles P. J., Porcelli I., Reily C. F., Baugh R., Powers J. 1980; Human leukocyte elastase and cathepsin G: structural and functional characteristics. CIBA Foundation Symposium: Excerpta Medica 75:51–68
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-3-539
Loading
/content/journal/micro/10.1099/00221287-134-3-539
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error