1887

Abstract

SUMMARY: Several regression methods were tested for estimating the sizes of a wide range of plasmids (1·37–312 MDa) and restriction fragments (2·2–14·2 MDa) by agarose gel electrophoresis. The most accurate and least variable method was the multiple regression of log molecular size against log relative mobility and the reciprocal square root of the relative mobility. This method gave a good fit to all the data with low percentage errors of the molecular size estimates (≤ 3·0 ± 1·5%). It is suggested that with this method the molecular size of unknown plasmids can be accurately estimated using the plasmids from V517 and IR713 as standards.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-1-53
1986-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/1/mic-132-1-53.html?itemId=/content/journal/micro/10.1099/00221287-132-1-53&mimeType=html&fmt=ahah

References

  1. Aaij C., Borst P. 1972; The gel electrophoresis of DNA. Biochimica et biophysica acta 269:192–200
    [Google Scholar]
  2. Barth P.T., Tobin L., Sharpe G.S. 1981; Development of broad host range plasmid vectors. In Molecular Biology, Pathogenicity, and Ecology of Bacterial Plasmids, Edited by S. B. Levy, R. C. Clowes & E. L. Koenig. New York: Plenum Press. 439–448
    [Google Scholar]
  3. Burton N. F., Day M. J., Bull A. T. 1982; Distribution of bacterial plasmids in clean and polluted sites in a South Wales river. Applied and Environmental Microbiology 44:1026–1029
    [Google Scholar]
  4. Chatterjee S., Price B. 1977; Regression Analysis by Example. New York:. John Wiley.
    [Google Scholar]
  5. Currier T. C., Morgan M. K. 1981; Restriction endonuclease analyses of the incompatibility group P-1 plasmids RK2, RP1, RP4, R68, and R68.45. Current Microbiology 5:323–327
    [Google Scholar]
  6. Goldstein E., Drlica K. 1984; Regulation of bacterial DNA supercoiling: plasmid linking numbers vary with growth temperature. Proceedings of the National Academy of Sciences of the United States of America 81:4046–4050
    [Google Scholar]
  7. Grindley N.D.F, Humphreys G.O., Anderson E.S. 1973; Molecular studies of R factor compatibility groups. Journal of Bacteriology 115:387–399
    [Google Scholar]
  8. Grinter N.J, Barth P.T. 1976; Characterisation of SmSu plasmids by restriction endonuclease cleavage and compatibility testing. Journal of Bacteriology 128:394–400
    [Google Scholar]
  9. Hansen J.B, Olsen R.H. 1978; Isolation oflarge bacterial plasmids and characterisation of the P-2 incompatibility group plasmids pMG 1 and pMG5. Journal of Bacteriology 135:227–238
    [Google Scholar]
  10. Jacob A.E, Shapiro J.A., Yamamoto L., Smith D.I., Cohen S.N., Berg D. 1977; Plasmids studied in Escherichia coli and other enteric bacteria. In DNA Insertion Elements, Plusmid.Y und Episumrs, Edited by A. I. Bukhari, J. A. Shapiro & S. L. Adhya. Cold Spring Harbor. New York: Cold Spring Harbor Laboratory. 607–704
    [Google Scholar]
  11. Jacoby G.A., Sutton L., Knobel L., Mammen P. 1983; Properties of IncP-2 plasmids of Pseudomonas spp. Antimicrobial Agents and Chemotherapy 24:168–175
    [Google Scholar]
  12. Kado C.I., Liu S.T. 1981; Rapid procedure for detection and isolation of large and small plasmids. Journal of Bacteriology 145:1365–1373
    [Google Scholar]
  13. Korfhagen T.R., Sutton L., Jacoby G.A. 1978; Classification and physical properties of Pseudomonas plasmids. In Microbiology, Edited by D. Schlessinger. Washington:. American Society for Microbiology.221–224
    [Google Scholar]
  14. Lanka E., Barth P.T. 1981; Plasmid RP4 specifies a DNA primase involved in its conjugal transfer and maintenance. Journal of Bacteriology 148:769–781
    [Google Scholar]
  15. Lehrbach P.R., MacGregor I., Ward J.M., Broda P. 1983; Molecular relationships between Pseudomonas IncP-9 degradative plasmids TOL, NAH, and SAL. Plasmid 10:164–174
    [Google Scholar]
  16. Macrina F.L., Kopecko D. J, Jones K.R., Ayers D. J, McCowen S. M. 1978; A multiple plasmid containing Escherichia coli strain: a convenient source of size reference molecules. Plasmid 1:147–420
    [Google Scholar]
  17. Meyers J.A., Sanchez D., Elwell L.P., Falkow S. 1976; Simple agarose gel electrophoretic method for the identification and characterisation of plasmid deoxyribonucleic acid. Journal of Bacteriology 127:1529–1537
    [Google Scholar]
  18. Ryan T.A., Jointer B.L., Ryan B.F. 1976; Minitab Student Handbook. North Scituate, USA : Duxbury Press.
    [Google Scholar]
  19. Schaffer H.E., Sederoff R.R. 1981; Improved estimation of DNA fragment lengths from agarose gels. Analytical Biochemistry 115:113–122
    [Google Scholar]
  20. Southern E.M. 1979; Measurement of DNA length by gel electrophoresis. Analytical Biochemistry 100:319–323
    [Google Scholar]
  21. Velleman P.F., Hoaglin D.C. 1981; Applications, Basics, and Computing of Exploratory Data Analysis. Boston, USA: Duxbury Press.
    [Google Scholar]
  22. Wang J.C. 1980; Superhelical DNA. Trends in Biochemical Sciences 5:219–221
    [Google Scholar]
  23. Willshaw G.A., Smith H.R., Anderson E.S. 1979; Application of agarose gel electrophoresis to the characterization of plasmid DNA in drugresistant enterobacteria. Journal of General Microbiology 114:15–25
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-1-53
Loading
/content/journal/micro/10.1099/00221287-132-1-53
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error