1887

Abstract

Y185, enriched in linoleyl residues and incubated for up to 4 h in derepression buffer, more rapidly acquired general amino-acid permease (GAP) activity, as measured by the rate of accumulation of -alanine, compared with organisms enriched in oleyl residues. A GAP-less mutant incubated under the same conditions did not acquire further -alanine-accumulating ability, irrespective of the nature of the fatty-acyl enrichment. During derepression, values for the GAP were virtually identical irrespective of the fatty-acyl enrichment, but values were greater for linoleyl residue-enriched organisms, particularly after 1 h in derepression buffer. During incubation in derepression buffer, organisms with either fatty-acyl enrichment did not differ in the size of the amino-N pool, the concentration of -alanine in that pool, rates of protein synthesis and glucose fermentation, or rate and extent of incorporation of label from . Under conditions used to measure rates of -alanine accumulation, organisms with either enrichment showed no evidence of metabolism of accumulated -alanine.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-1-57
1985-01-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/1/mic-131-1-57.html?itemId=/content/journal/micro/10.1099/00221287-131-1-57&mimeType=html&fmt=ahah

References

  1. Alterthum R., Rose A. H. 1973; Osmotic lysis of sphaeroplasts from Saccharomyces cerevisiae grown anaerobically in media containing different unsatu-rated fatty acids. Journal of General Microbiology 77:371–382
    [Google Scholar]
  2. Andreasen A. A., Stier T. J. B. 1953; Anaerobic nutrition of Saccharomyces cerevisiae I. Ergosterol requirement for growth in a defined medium. Journal of Cellular and Comparative Physiology 41:23–36
    [Google Scholar]
  3. Andreasen A. A., Stier T. J. B. 1954; Anaerobic nutrition of Saccharomyces cerevisiae II. Unsaturat-ed fatty acid requirement for growth in a defined medium. Journal of Cellular and Comparative Physiology 43:271–281
    [Google Scholar]
  4. Calderbank J., Keenan M. H. J., Rose A. H., Holman G. D. 1984; Accumulation of amino acids by Saccharomyces cerevisiae Y185 with phos-pholipids enriched in different fattyacyl residues : a statistical analysis of data. Journal of General Microbiology 130:2817–2824
    [Google Scholar]
  5. Courchesne W. E., Magasanik B. 1983; Ammonia regulation of amino acid permeases in Saccharomyces cerevisiae . Molecular and Cellular Biology 3:672–682
    [Google Scholar]
  6. Eddy A. A. 1982; Mechanisms of solute transport into selected eukaryotic micro-organisms. Advances in Microbial Physiology 23:1–78
    [Google Scholar]
  7. Elliott S. G., McLaughlin C. S. 1978; Rate of macromolecular synthesis through the cell cycle of the yeast Saccharomyces cerevisiae . Proceedings of the National Academy of Sciences of the United States of America 754384–4388
    [Google Scholar]
  8. Fink H., Kühles R. 1933; Beiträge zur Methy-lenblaufarburg der Hefezellen und Studien über die Permeabilitat der Hefezellmembran. II. Mitteilung. Eine Verbesserte Färbflüssigkeit zür Erkennung von totan Hefezellen. Hoppe Seyler’s Zeitschrift für physiologische Chemie 218:65–66
    [Google Scholar]
  9. Folch J., Lees M., Sloane Stanley G. H. 1957; A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226:497–509
    [Google Scholar]
  10. Gregory M. E., Keenan M. H. J., Rose A. H. 1982; Accumulation of l-asparagine by Saccharomyces cerevisiae X-2180. Journal of General Microbiology 128:2557–2562
    [Google Scholar]
  11. Grenson M. 1983; Study of the positive control of the general amino-acid permease and other ammonia-sensitive uptake systems by the product of the NPR1 gene in the yeast Saccharomyces cerevisiae . European Journal of Biochemistry 133:141–144
    [Google Scholar]
  12. Grenson M., Hou C., Crabeel M. 1970; Multiplicity of the amino acid permeases in Saccharomyces cerevisiae IV. Evidence for a general amino acid permease. Journal of Bacteriology 103:770–777
    [Google Scholar]
  13. Harris G., Parsons R. 1958; Nitrogenous constituents of brewing materials. XI. Nucleic acids of malt and their fate during brewing. Journal of the Institute of Brewing 64:308–316
    [Google Scholar]
  14. Hennaut C., Hilger F., Grenson M. 1970; Space limitation for permease insertion in the cytoplasmic membrane of Saccharomyces cerevisiae . Biochemical and Biophysical Research Communications 39:666–671
    [Google Scholar]
  15. Henschke P. A., Thomas D. S., Rose A. H., Veazey F. J. 1983; Association of intracellular low-density vesicles with plasma membranes from Saccharomyces cerevisiae NCYC 366. Journal of General Microbiology 129:2927–2938
    [Google Scholar]
  16. Hofstee B. H. J. 1959; Non-inverted versus inverted plots in enzyme kinetics. Nature London: 1841296–1298
    [Google Scholar]
  17. Keenan M. H. J., Rose A. H. 1979; Plasma-membrane lipid unsaturation can affect the kinetics of solute accumulation by Saccharomyces cerevisiae . FEMS Microbiology Utters 6:133–137
    [Google Scholar]
  18. Keenan M. H. J., Rose A. H., Silverman B. W. 1982; Effect of plasma membrane phospholipid unsaturation on solute transport into Saccharomyces cerevisiae NCYC 366. Journal of General Microbiology 128:2547–2556
    [Google Scholar]
  19. Kotyk A., Ríhová L. 1972; Energy requirement for amino acid uptake in Saccharomyces cerevisiae . Folia Microbiologica 17:353–356
    [Google Scholar]
  20. Neal J. L. 1972; Analysis of Michaelis kinetics for two independent saturable membrane transport functions. Journal of Theoretical Biology 35:113–118
    [Google Scholar]
  21. Novick P., Ferro S., Schekman R. 1981; Order of events in the yeast secretory pathway. Cell 25:461–469
    [Google Scholar]
  22. Ramirez R. M., Ishida-Schick T., Krilowicz B. L., Leish B. A., Atkinson K. D. 1983; Plasma membrane extension terminates in Saccharomyces cerevisiae secretion-defective mutants while phospholipid synthesis continues. Journal of Bacteriology 154:1276–1283
    [Google Scholar]
  23. Roon R. J., Larimore F., Levy J. S. 1975; Inhibition of amino acid transport by ammonium ions in Saccharomyces cerevisiae . Journal of Bacteriology 124:325–331
    [Google Scholar]
  24. Rytka J. 1975; Positive selection of general amino acid permease mutants in Saccharomyces cerevisiae . Journal of Bacteriology 121:565–570
    [Google Scholar]
  25. Umbreit W. W., Burris R. H., Stauffer J. F. 1964 Manometric Techniques, 4. Minneapolis: Burgess Publishing Company;
    [Google Scholar]
  26. Watson K., Rose A. H. 1980; Fatty-acyl composition of the lipids of Saccharomyces cerevisiae grown aerobically or anaerobically in media containing fatty acids. Journal of General Microbiology 117:225–233
    [Google Scholar]
  27. Williamson D. H. 1974; l-Alanine determination with alanine dehydrogenase. Methods of Enzymatic Analysis, 2. 41679–1682 Bergmeyer H. U. New York: Academic Press;
    [Google Scholar]
  28. Woodward J. R., Cirillo V. P. 1977; Amino acid transport and metabolism in nitrogen-starved cells of Saccharomyces cerevisiae . Journal of Bacteriology 130:714–723
    [Google Scholar]
  29. Woodward J. R., Kornberg H. L. 1980; Membrane proteins associated with amino acid transport by yeast (Saccharomyces cerevisiae). Biochemical Journal 192:659–664
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-1-57
Loading
/content/journal/micro/10.1099/00221287-131-1-57
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error